码迷,mamicode.com
首页 > 其他好文 > 详细

AVL树

时间:2017-07-27 01:01:18      阅读:158      评论:0      收藏:0      [点我收藏+]

标签:概念   斐波那契   证明   nec   type   插入   date   bre   auto   

AVL树是一种平衡二叉搜索树,在渐进意义下,可以保证树的高度为logn,查找、插入和删除操作均可以在O(logn)时间内完成。AVL树的名字来源,是提出它的人0 0

引入平衡因子的概念,任一节点的平衡因子定义为其左右子树的高度差。

AVL树的限定,是任何一个节点的平衡因子绝对值不大于1。可以通过继承BST来得到AVL树,只需要重写节点的插入和删除操作即可。可以证明,AVL树最少节点数为fib(h+3)-1,此时的树称为斐波那契AVL树。

1 #include"BST.h"
2 template<typename T> class AVL :public BST<T>
3 {
4 public:
5     BinNodePosi(T) insert(const T& e) override;
6     bool remove(const T& e) override;
7 };

节点的插入操作,总体与BST相同,不同之处在于,如果插入后原树不满足AVL树的条件,需要进行旋转操作,重新平衡。旋转重平衡可以分为单旋和双旋,如下图所示。可以发现,旋转后以g为根的子树高度-1.

技术分享技术分享

 1 template<typename T> BinNodePosi(T) AVL<T>::insert(const T& e)//O(logn)
 2 {
 3     //std::cout << "haha" << std:: endl;
 4     BinNodePosi(T)& x = search(e); if (x) return x;
 5     BinNodePosi(T) xx = x = new BinNode<T>(e, _hot); _size++;//此时x的父亲_hot若增高,则祖父有可能失衡
 6     for (BinNodePosi(T) g = _hot; g; g = g->parent)//从_hot检查是否失衡,用3+4算法回复
 7     {
 8         if (!AvlBalanced(*g))
 9         {
10             FromParentTo(*g) = rotateAt(tallerChild(tallerChild(g))); break;//并将子树重新接入原树
11         }//旋转的输入参数为g较高的孙子
12         else
13             updateHeight(g);//更新高度,即使未失衡也可能高度增加
14     }
15     //std::cout << "xixi" << std::endl;
16     return xx;//返回新节点的位置
17 }

rotateAt()在后面实现。可以证明,插入操作一旦造成一个节点失去平衡,那么其父亲也有可能失去平衡。不过,如果其父亲未失去平衡,那么更高的祖先可以不必检查,必然未失衡。因此,循环可以考虑改进,一旦一个节点失衡而某一个祖先未失衡,算法可以停止。重平衡的操作有两种情况,单旋或者双旋可以使得AVL树重新平衡。

 

节点的删除操作,流程上类似。不过,删除操作每次只会导致一个节点失衡。可以发现,重新平衡后,以p为根的子树高度可能会降低也可能保持不变。因此,对这个节点进行旋转恢复平衡,可能会导致更高层的节点失衡,这种现象称为失衡传播。因此,需要从下到上检查节点才能保证恢复平衡。

技术分享技术分享

 1 template<typename T> bool AVL<T>::remove(const T& e)//O(logn)
 2 {
 3     BinNodePosi(T)& x = search(e); if (!x) return false;
 4     removeAt(x, _hot); _size--;
 5     for (BinNodePosi(T) g = _hot; g; g = g->parent)//从_hot开始向上检查,可能造成失衡传播
 6     {
 7         if (!AvlBalanced(*g))
 8             g = FromParentTo(*g) = rotateAt(tallerChild(tallerChild(g))); //原父亲
 9             updateHeight(g);//更新高度,即使未失衡也可能高度增加
10     }//最坏情况需要做O(logn)次
11     return true;//返回新节点的位置
12 }

 

最后,实现重新恢复平衡的方法。其实,综合以上的单旋和双旋情况,可以综合为一个统一的问题,即三个节点和四棵子树的重新组合,具体如下图:

 技术分享

因此,可以把插入和删除的单双旋操作统一纳入到框架中,分情况连接这三个节点和四棵子树:

 1 template<typename T> BinNodePosi(T) BST<T>::connect34(BinNodePosi(T) a, BinNodePosi(T) b, BinNodePosi(T) c,
 2     BinNodePosi(T) T0, BinNodePosi(T) T1, BinNodePosi(T) T2, BinNodePosi(T) T3)
 3 {
 4     a->lc = T0; if (T0) T0->parent = a;
 5     a->rc = T1; if (T1) T1->parent = a; updateHeight(a);
 6     c->lc = T2; if (T2) T2->parent = c;
 7     c->rc = T3; if (T3) T3->parent = c; updateHeight(c);
 8     b->lc = a; a->parent = b;
 9     b->rc = c; c->parent = b; updateHeight(b);
10     return b;//返回新树的根节点
11 }
12 template<typename T> BinNodePosi(T) BST<T>::rotateAt(BinNodePosi(T) v)
13 {
14     BinNodePosi(T) p = v->parent; BinNodePosi(T) g = p->parent;//根据v,p,g相对位置分四种情况
15     if(IsLChild(*p))//zig,p是左孩子
16         if (IsLChild(*v))//zig-zig
17         {
18             p->parent = g->parent;
19             return connect34(v, p, g, v->lc, v->rc, p->rc, g->rc);
20         }
21         else //zig-zag
22         {
23             v->parent = g->parent;
24             return connect34(p, v, g, p->lc, v->lc, v->rc, g->rc);
25         }
26     else//zag,p是右孩子
27         if (IsRChild(*v))
28         {
29             p->parent = g->parent;
30             return connect34(g, p, v, g->lc, p->lc, v->lc, v->rc);
31         }
32         else
33         {
34             v->parent = g->parent;
35             return connect34(g, v, p, g->lc, v->lc, v->rc, p->rc);
36     

 

AVL树

标签:概念   斐波那契   证明   nec   type   插入   date   bre   auto   

原文地址:http://www.cnblogs.com/lustar/p/7219861.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!