标签:owb sig algorithm queue ring fabs signed com 输入
题意:已知N*N的矩阵A,输出矩阵A + A2 + A3 + . . . + Ak,每个元素只输出最后一个数字。
分析:
A + A2 + A3 + . . . + An可整理为下式,
从而可以用log2(n)的复杂度算出结果。
注意:输入时把矩阵A的每个元素对10取余,因为若不处理,会导致k为1的时候结果出错。
#include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define lowbit(x) (x & (-x)) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 10; const double pi = acos(-1.0); const int MAXN = 40 + 10; const int MAXT = 10000 + 10; using namespace std; int n; struct Matrix{ int r, c, matrix[MAXN][MAXN]; Matrix(int rr, int cc):r(rr), c(cc){ memset(matrix, 0, sizeof matrix); } }; Matrix add(Matrix a, Matrix b){ Matrix ans(n, n); for(int i = 0; i < a.r; ++i){ for(int j = 0; j < a.c; ++j){ ans.matrix[i][j] = ((a.matrix[i][j] % MOD) + (b.matrix[i][j] % MOD)) % MOD; } } return ans; } Matrix mul(Matrix a, Matrix b){ Matrix ans(a.r, b.c); for(int i = 0; i < a.r; ++i){ for(int j = 0; j < b.c; ++j){ for(int k = 0; k < a.c; ++k){ (ans.matrix[i][j] += ((a.matrix[i][k] % MOD) * (b.matrix[k][j] % MOD)) % MOD) %= MOD; } } } return ans; } Matrix QPOW(Matrix a, int k){ Matrix ans(n, n); for(int i = 0; i < n; ++i){ ans.matrix[i][i] = 1; } while(k){ if(k & 1) ans = mul(ans, a); a = mul(a, a); k >>= 1; } return ans; } Matrix solve(Matrix tmp, int k){ if(k == 1) return tmp; Matrix t = solve(tmp, k >> 1); Matrix ans = add(t, mul(QPOW(tmp, k >> 1), t)); if(k & 1) ans = add(ans, QPOW(tmp, k)); return ans; } int main(){ int k; while(scanf("%d%d", &n, &k) == 2){ if(n == 0) return 0; Matrix tmp(n, n); for(int i = 0; i < n; ++i){ for(int j = 0; j < n; ++j){ scanf("%d", &tmp.matrix[i][j]); tmp.matrix[i][j] %= MOD; } } Matrix ans = solve(tmp, k); for(int i = 0; i < ans.r; ++i){ for(int j = 0; j < ans.c; ++j){ if(j) printf(" "); printf("%d", ans.matrix[i][j]); } printf("\n"); } printf("\n"); } return 0; }
UVA - 11149 Power of Matrix(矩阵倍增)
标签:owb sig algorithm queue ring fabs signed com 输入
原文地址:http://www.cnblogs.com/tyty-Somnuspoppy/p/7260766.html