码迷,mamicode.com
首页 > 其他好文 > 详细

利用后缀数组(suffix array)求最长公共子串(longest common substring)

时间:2014-09-03 16:26:16      阅读:309      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   color   os   io   使用   strong   ar   

  摘要本文讨论了最长公共子串的的相关算法的时间复杂度,然后在后缀数组的基础上提出了一个时间复杂度为o(n^2*logn),空间复杂度为o(n)的算法。该算法虽然不及动态规划和后缀树算法的复杂度低,但其重要的优势在于可以编码简单,代码易于理解,适合快速实现。

 

  首先,来说明一下,LCS通常指的是公共最长子序列(Longest Common Subsequence,名称来源参见《算法导论》原书第3版p223),而不是公共最长子串(也称为最长公共子串)。

  最长公共子串问题是在文本串、模式串中寻找共有的一个最长的子串,如文本串text=“abcbcedf”,pattern=“ebcbcdf”,则最长公共子串为“bcbc”,长度为4。

  最长公共子串的解法很多,有蛮力搜索法、动态规划法、后缀数组法、后缀树法。本文着重提后缀数组法,其他方法可以自行百度。

  蛮力搜索法

  

 1 int enum_longestCommonSubstring(char *text,char *pattern)
 2  {
 3     if(!text || !pattern)  return 0;     //nullptr
 4     int tlen=strlen(text),plen=strlen(pattern);
 5     if(0==tlen || 0==plen) return 0; //empty string
 6     int maxLEN=0,i=0,j=0,ofs=0;
 7     for(i=0;i<tlen && (tlen-i>=maxLEN);++i)
 8         for(j=0;j<plen && (plen-j>=maxLEN); ++j)
 9             if( *(text+i)==*(pattern+j) )
10             {    
11                 ofs=1;
12                 while((i+ofs)<tlen&&(j+ofs)<plen&&*(text+ofs)==*(pattern+ofs))
13                     {    ++ofs;   }
14                 if(ofs>maxLEN)  maxLEN=ofs;  //update
15             }
16     return maxLEN;
17 }

  记文本串长度为m,模式串长度为n,则暴力搜索法时间复杂度为o(m*n*Min(m,n)),空间复杂度o(1)。在子串匹配问题上,如果使用KMP算法,则算法效率可以提高。

  动态规划

  动态规划求解最长公共子串问题的时间复杂度为o(m*n),经过优化后的动态规划算法可以达到o(Min(m,n))的空间复杂度

  参见http://www.cnblogs.com/ider/p/longest-common-substring-problem-optimization.html

  

  后缀数组

  利用排序后的后缀数组(suffix array)来求解最长公共子串步骤为:

    一,拼接文本串和模式串得到一个新的串X;

    二,将X的所有后缀数组存入sa;(文本串长度为m,模式串长n。步骤二时间复杂度o(m+n)

    三,对sa进行排序;

    四,计算sa中相邻的子串的最长公共前缀长度(时间复杂度o((m+n)*Min(m,n)))

    注:为了避免得到单个串的最长重复子串,在步骤四种参与比较的两个子串应该为一个是文本串的子串,另一个为模式串的子串。因此,在步骤一、二中就应该附加记录位来处理。

  《后缀数组——————处理字符串的有力工具处理字符串的有力工具》罗穗骞介绍了使用基数排序来排序后缀数组的方法,排序时间复杂度(m+n)*log(m+n)。因此,使用使用后缀数组+基数排序得到的算法的时间复杂度为o((m+n)*Min(m,n))(步骤四决定最大时间复杂度)。但是,该方法较复杂,不容易掌握,在此处,我提出一种后缀数组+C标准库sort排序的算法,其排序时间复杂度为o(Min(m,n)*(m+n)*log(m+n)),因此,算法整体的时间复杂度为o(Min(m,n)*(m+n)*log(m+n))(由步骤三决定最大时间复杂度),此外,该算法空间复杂度为o(m+n)。  “后缀数组+快排”算法时间复杂低于“后缀数组+基数排序”的时间复杂度,但优点在于利用标准库sort+strcmp来实现排序,代码简单,算法更容易理解。代码如下:

  

 1 #include<stdio.h>
 2 #include<iostream>
 3 #include<string.h>
 4 #include<algorithm>
 5 using namesapce std;
 6 int suffixArrayQsort_longestCommonSubstring(char *text,char *pattern)
 7 {
 8     if(!text || !pattern)  return 0;     //nullptr
 9     int tlen=strlen(text),plen=strlen(pattern),i,j;
10     if(0==tlen || 0==plen) return 0; //empty string
11 
12     enum ATTRIB{TEXT,PATTERN};
13     struct absInfo
14     {
15         char *head;
16         ATTRIB attr;  //tag
17         int len;
18         absInfo():head(NULL),attr(TEXT),len(0){}
19         absInfo(char *phead,ATTRIB attrib,int length):head(phead),attr(attrib),len(length){}
20         bool operator < (const absInfo &b)
21         {
22             return  strcmp(head,b.head)<0;
23         }
24         static void display(const absInfo &a)
25         {
26             printf("size:%d type:%-7s    ",a.len, (a.attr==TEXT?"TEXT":"PATTERN") );
27             printf("%s\n",a.head);
28         }
29     }*sa;
30 
31     //step 2:build the suffix array
32     sa=new absInfo[tlen+plen];
33     for(i=0;i<tlen;++i)
34     {
35         sa[i].head=text+i;
36         sa[i].attr=TEXT;
37         sa[i].len=tlen-i;
38     }
39     for(j=0;j<plen;++j)
40     {
41         sa[j+tlen].head=pattern+j;
42         sa[j+tlen].attr=PATTERN;
43         sa[j+tlen].len=plen-j;
44     }
45 
46     //step 3:use sort() to sort the sa
47     puts("before sort, the sa is:"); for_each(sa,sa+tlen+plen,absInfo::display);
48     sort(sa,sa+tlen+plen);
49     puts("after sort, the sa is:"); for_each(sa,sa+tlen+plen,absInfo::display);
50 
51     //step 4:compare
52     int maxLEN=0,rec=0;
53     for(i=0;i<tlen+plen-1;i++)
54     {
55         if(sa[i].attr==sa[i+1].attr) continue;
56         if(sa[i].len<=maxLEN || sa[i+1].len<=maxLEN) continue;
57         rec=0;
58         while(rec<sa[i].len && rec<sa[i+1].len && *(sa[i].head+rec)==*(sa[i+1].head+rec) )
59           ++rec;
60         if(rec>maxLEN)  maxLEN=rec; //update
61     }
62     //release memory resource and return
63     delete [] sa; sa=NULL;
64     return maxLEN;
65 }

  注:1,absInfo结构中len字段不是必须的,设置此字段只是为了在代码56行处做一个搜索剪枝操作。

    2,稍微改动代码就能在算法中给出公共子串的值(对示例来说就是给出“bcbc"),通过absInfo的len字段和maxLEN值也可以在o(1)的时间复杂度内计算出公共子串分别在文本串和模式串中的位置

  运行结果:

  当文本串text=“abcbcedf”,pattern=“ebcbcdf”时,代码运行如下图所示:

  bubuko.com,布布扣

  从代码可以看出,“后缀数组+qsort排序”实现最长公共子串具有编码简单的特点,空间复杂度为o(m+n)

  后缀树

  后缀树以及广义的后缀树算法读者可以自行搜索。

  

利用后缀数组(suffix array)求最长公共子串(longest common substring)

标签:style   blog   http   color   os   io   使用   strong   ar   

原文地址:http://www.cnblogs.com/youngzii/p/algorithm.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!