当程序转移执行的顺序时,指令的寻址就采取跳跃寻址方式。所谓跳跃,是指下条指令的地址码不是由程序计数器给出,而是由本条指令给出。注意,程序跳跃后,按新的指令地址开始顺序执行。因此,程序计数器的内容也必须相应改变,以便及时跟踪新的指令地址。
采用指令跳跃寻址方式,可以实现程序转移或构成循环程序,从而能缩短程序长度,或将某些程序作为公共程序引用。指令系统中的各种条件转移或无条件转移指令,就是为了实现指令的跳跃寻址而设置的。
形成操作数的有效地址的方法称为操作数的寻址方式。由于大型机、小型机、微型机和单片机结构不同,从而形成了各种不同的操作数寻址方式。下面介绍一些比较典型又常用的操作数寻址方式。[2]
隐含寻址
这种类型的指令,不是明显地给出操作数的地址。而是在指令中隐含着操作数的地址。例如,单地址的指令格式,就不明显地在地址字段中指出第2操作数的地址,而是规定累加寄存器AC作为第2操作数地址。指令格式明显指出的仅是第1操作数的地址D。因此,累加寄存器AC对单地址指令格式来说是隐含地址。[2]
如:DAA ;
立即寻址
指令的地址字段指出的不是操作数的地址,而是操作数本身,这种寻址方式称为立即寻址。立即寻址方式的特点是指令执行时间很短,因为它不需要访问内存取数,从而节省了访问内存的时间。[2]
如:MOV AX,5678H 注意:立即数只能作为源操作数,不能作为目的操作数。
直接寻址
直接寻址是一种基本的寻址方法,其特点是:在指令格式的地址的字段中直接指出操作数在内存的地址。由于操作数的地址直接给出而不需要经过某种变换,所以称这种寻址方式为直接寻址方式。在指令中直接给出参与运算的操作数及运算结果所存放的主存地址,即在指令中直接给出有效地址[2]
间接寻址
间接寻址是相对直接寻址而言的,在间接寻址的情况下,指令地址字段中的形式地址不是操作数的真正地址,而是操作数地址的指示器,或者说此形式地址单元的内容才是操作数的有效地址。[2]
寄存器寻址方式和寄存器间接寻址方式
当操作数不放在内存中,而是放在CPU的通用寄存器中时,可采用寄存器寻址方式。显然,此时指令中给出的操作数地址不是内存的地址单元号,而是通用寄存器的编号(可以是8位也可以是16位(AX,BX,CX,DX))。指令结构中的RR型指令,就是采用寄存器寻址方式的例子。如:MOV DS,AX
寄存器间接寻址方式与寄存器寻址方式的区别在于:指令格式中的寄存器内容不是操作数,而是操作数的地址,该地址指明的操作数在内存中。[2]
相对寻址方式
相对寻址是把程序计数器PC的内容加上指令格式中的形式地址D而形成操作数的有效地址。程序计数器的内容就是当前指令的地址。“相对”寻址,就是相对于当前的指令地址而言。采用相对寻址方式的好处是程序员无须用指令的绝对地址编程,因而所编程序可以放在内存的任何地方。[2]
指令格式:MOV AX,[BX+1200H] 操作数物理地址PA=(DS/SS)*10H+EA EA=(BX/BP/SI/DI)+(6/8)位偏移量Disp 对于BX,SI,DI寄存器来说段寄存器默认为DS,对于SP来说,段寄存器默认为SS[3]
基址寻址方式
在基址寻址方式中将CPU中的基址寄存器的内容,加上变址寄存器的内容而形成操作数的有效地址。基址寻址的优点是可以扩大寻址能力,因为与形式地址相比,基址寄存器的位数可以设置得很长,从而可以在较大的存储空间中寻址。[2]
变址寻址方式
变址寻址方式与基址寻址方式计算有效地址的方法很相似,它把CPU中某个变址寄存器的内容与偏移量D相加来形成操作数有效地址。
但使用变址寻址方式的目的不在于扩大寻址空间,而在于实现程序块的规律变化。为此,必须使变址寄存器的内容实现有规律的变化(如自增1、自减1、乘比例系数)而不改变指令本身,从而使有效地址按变址寄存器的内容实现有规律的变化。[2]