码迷,mamicode.com
首页 > 其他好文 > 详细

n个元素进栈,共有多少种出栈顺序?

时间:2017-08-03 20:15:21      阅读:116      评论:0      收藏:0      [点我收藏+]

标签:公式   data   算法   小问题   根据   数据   递推   ref   有一个   

近日在复习数据结构,看到栈的时候,发现1个元素进栈,有1种出栈顺序;2个元素进栈,有2种出栈顺序;3个元素进栈,有5种出栈顺序,那么一个很自然地问题就是n个元素进栈,共有多少种出栈顺序?

 

说来惭愧,以前学数据结构的时候竟然没有考虑过这个问题。最近在看动态规划,所以“子问题”这3个字一直在我脑中徘徊,于是解决这个问题的时候我也是用类似“子问题”的方法,说白了就是递推公式。

 

我们把n个元素的出栈个数的记为f(n), 那么对于1,2,3, 我们很容易得出:

 

                                     f(1) = 1     //即 1

                                     f(2) = 2     //即 12、21

                                     f(3) = 5     //即 123、132、213、321、231

 

然后我们来考虑f(4), 我们给4个元素编号为a,b,c,d, 那么考虑:元素a只可能出现在1号位置,2号位置,3号位置和4号位置(很容易理解,一共就4个位置,比如abcd,元素a就在1号位置)。

分析:

 

 1) 如果元素a在1号位置,那么只可能a进栈,马上出栈,此时还剩元素b、c、d等待操作,就是子问题f(3);

 2) 如果元素a在2号位置,那么一定有一个元素比a先出栈,即有f(1)种可能顺序(只能是b),还剩c、d,即f(2),     根据乘法原理,一共的顺序个数为f(1) * f(2);

 3) 如果元素a在3号位置,那么一定有两个元素比1先出栈,即有f(2)种可能顺序(只能是b、c),还剩d,即f(1),

    根据乘法原理,一共的顺序个数为f(2) * f(1);

 4) 如果元素a在4号位置,那么一定是a先进栈,最后出栈,那么元素b、c、d的出栈顺序即是此小问题的解,即         f(3);

 

结合所有情况,即f(4) = f(3) + f(2) * f(1) + f(1) * f(2) + f(3);

为了规整化,我们定义f(0) = 1;于是f(4)可以重新写为:

f(4) = f(0)*f(3) + f(1)*f(2) + f(2) * f(1) + f(3)*f(0)

 

然后我们推广到n,推广思路和n=4时完全一样,于是我们可以得到:

f(n) = f(0)*f(n-1) + f(1)*f(n-2) + ... + f(n-1)*f(0)

 

 技术分享

n个元素进栈,共有多少种出栈顺序?

标签:公式   data   算法   小问题   根据   数据   递推   ref   有一个   

原文地址:http://www.cnblogs.com/da-peng/p/7281437.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!