标签:char pac stdout turn ace min names amp 处理
题意: 给出m个村庄及其距离,给出n个邮局,要求怎么建n个邮局使代价最小。
析:一般的状态方程很容易写出,dp[i][j] = min{dp[i-1][k] + w[k+1][j]},表示前 j 个村庄用 k 个邮局距离最小,w可以先预处理出来O(n^2),但是这个方程很明显是O(n^3),但是因为是POJ,应该能暴过去。。= =,正解应该是对DP进行优化,很容易看出来,w是满足四边形不等式的,也可以推出来 s 是单调的,可以进行优化。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 300 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[35][maxn], w[maxn][maxn], s[35][maxn]; int a[maxn]; int main(){ while(scanf("%d %d", &n, &m) == 2){ for(int i = 1; i <= n; ++i) scanf("%d", a+i); for(int i = 1; i <= n; ++i){ w[i][i] = 0; for(int j = i+1; j <= n; ++j) w[i][j] = w[i][j-1] + a[j] - a[i+j>>1]; } memset(dp, INF, sizeof dp); memset(s, 0, sizeof s); for(int i = 1; i <= n; ++i) dp[1][i] = w[1][i]; for(int i = 2; i <= m; ++i){ s[i][n+1] = n; for(int j = n; j >= i; --j) for(int k = s[i-1][j]; k <= s[i][j+1]; ++k) if(dp[i][j] > dp[i-1][k] + w[k+1][j]){ dp[i][j] = dp[i-1][k] + w[k+1][j]; s[i][j] = k; } } printf("%d\n", dp[m][n]); } return 0; }
POJ 1160 Post Office (四边形不等式优化DP)
标签:char pac stdout turn ace min names amp 处理
原文地址:http://www.cnblogs.com/dwtfukgv/p/7290790.html