码迷,mamicode.com
首页 > 其他好文 > 详细

线性回归之决定系数(coefficient of determination)

时间:2017-08-06 19:28:10      阅读:798      评论:0      收藏:0      [点我收藏+]

标签:account   sed   产生   validate   通过   reg   water   ati   ror   

1. Sum Of Squares Due To Error 
技术分享
对于第i个观察点, 真实数据的Yi与估算出来的Yi-head的之间的差称为第i个residual, SSE 就是所有观察点的residual的和
2. Total Sum Of Squares
技术分享

3. Sum Of Squares Due To Regression
技术分享

 

通过以上我们能得到以下关于他们三者的关系

技术分享

 

决定系数: 判断 回归方程 的拟合程度


(coefficient of determination)决定系数也就是说: 通过回归方程得出的 dependent variable 有 number% 能被 independent variable 所解释. 判断拟合的程度
技术分享

(Correlation coefficient) 相关系数 : 测试dependent variable 和 independent variable 他们之间的线性关系有多强. 也就是说, independent variable 产生变化时 dependent variable 的变化有多大.

可以反映是正相关还是负相关

技术分享

技术分享

参考链接:http://blog.csdn.net/ytdxyhz/article/details/51730995

 

注意此决定系数不能用来衡量非线性回归的拟合优度

Why Is It Impossible to Calculate a Valid R-squared for Nonlinear Regression?

R-squared is based on the underlying assumption that you are fitting a linear model. If you aren’t fitting a linear model, you shouldn’t use it. The reason why is actually very easy to understand.

For linear models, the sums of the squared errors always add up in a specific manner: SS Regression + SS Error = SS Total.

This seems quite logical. The variance that the regression model accounts for plus the error variance adds up to equal the total variance. Further, R-squared equals SS Regression / SS Total, which mathematically must produce a value between 0 and 100%.

In nonlinear regression, SS Regression + SS Error do not equal SS Total! This completely invalidates R-squared for nonlinear models, and it no longer has to be between 0 and 100%.

参考链接:http://blog.minitab.com/blog/adventures-in-statistics-2/why-is-there-no-r-squared-for-nonlinear-regression

线性回归之决定系数(coefficient of determination)

标签:account   sed   产生   validate   通过   reg   water   ati   ror   

原文地址:http://www.cnblogs.com/guo-xiang/p/7295550.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!