标签:lin span panel item its show 游戏 nod code
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000) 第2 - T + 1行:每行2个数N,K。中间用空格分隔。(1 <= N,K <= 10^9)
共T行,如果A获胜输出A,如果B获胜输出B。
4 3 2 4 2 7 3 8 3
B A A B
分析: 我们举几个例子尝试后就能发现,当n整除k+1时,假设A拿x颗,B只要拿K+1-x颗,这样就能保证每次拿完后石子数都能被k+1整除,这样当最后一次k+1时,无论A怎么拿,B都能拿到最后一颗石子。
那么对于A而言,他的优势更大,只要n不能整除k+1,他只需要拿走多余的余数n%(k+1),那么剩下的石子就能被k+1整除,A、B的身份就对调了,他可以采取我们之前所分析的策略来拿到最后一颗石子。
综上,此题非常简单,n%(k+1)时B获胜,其余时刻A获胜。
#include<bits/stdc++.h> using namespace std; int main () { int T,n,k; scanf("%d",&T); while (T--) { scanf("%d %d",&n,&k); if(n % (k+1) == 0)//如果 n能整除 k+1 那么A只要取x B每次都取k+1-x puts("B"); else//如果n不能整除 那么A刚开始就拿 n%(k+1)的.然后B只要取x A都能取相应的k+1-x puts("A"); } return 0; }
标签:lin span panel item its show 游戏 nod code
原文地址:http://www.cnblogs.com/Draymonder/p/7295777.html