标签:cto oda tensor rtl wss who pat box red
【目标识别】深度学习进行目标识别的资源列表:O网页链接 包括RNN、MultiBox、SPP-Net、DeepID-Net、Fast R-CNN、DeepBox、MR-CNN、Faster R-CNN、YOLO、DenseBox、SSD、Inside-Outside Net、G-CNN等。
Papers
[td]
method
|
ILSVRC 2013 mAP
|
OverFeat
|
24.3%
|
R-CNN
[td]
method
|
VOC 2007 mAP
|
VOC 2010 mAP
|
VOC 2012 mAP
|
ILSVRC 2013 mAP
|
R-CNN,AlexNet
|
54.2%
|
50.2%
|
49.6%
|
|
R-CNN,bbox reg,AlexNet |
58.5%
|
53.7%
|
53.3%
|
31.4%
|
R-CNN,bbox reg,ZFNet
|
59.2%
|
|||
R-CNN,VGG-Net |
62.2%
|
|||
R-CNN,bbox reg,VGG-Net |
66.0%
|
MultiBox
SPP-Net
[td]
method |
VOC 2007 mAP
|
ILSVRC 2013 mAP
|
SPP_net(ZF-5),1-model
|
54.2%
|
31.84%
|
SPP_net(ZF-5),2-model
|
60.9%
|
|
SPP_net(ZF-5),6-model | 35.11% |
DeepID-Net
[td]
method
|
VOC 2007 mAP
|
ILSVRC 2013 mAP
|
DeepID-Net
|
64.1%
|
50.3%
|
[td]
method
|
Trained on
|
mAP
|
NoC
|
07+12
|
68.8%
|
NoC,bb
|
07+12
|
71.6%
|
NoC,+EB
|
07+12
|
71.8%
|
NoC,+EB,bb
|
07+12
|
73.3%
|
[td]
Model
|
BBoxReg?
|
VOC 2007 mAP(IoU>0.5)
|
R-CNN(AlexNet)
|
No
|
54.2%
|
R-CNN(VGG)
|
No
|
60.6%
|
+StructObj
|
No
|
61.2%
|
+StructObj-FT
|
No
|
62.3%
|
+FGS
|
No
|
64.8%
|
+StructObj+FGS
|
No
|
65.9%
|
+StructObj-FT+FGS
|
No
|
66.5%
|
[td]
Model
|
BBoxReg?
|
VOC 2007 mAP(IoU>0.5)
|
R-CNN(AlexNet)
|
Yes
|
58.5%
|
R-CNN(VGG)
|
Yes
|
65.4%
|
+StructObj
|
Yes
|
66.6%
|
+StructObj-FT
|
Yes
|
66.9%
|
+FGS
|
Yes
|
67.2%
|
+StructObj+FGS
|
Yes
|
68.5%
|
+StructObj-FT+FGS
|
Yes
|
68.4%
|
Fast R-CNN
[td]
method
|
data
|
VOC 2007 mAP
|
FRCN,VGG16
|
07
|
66.9%
|
FRCN,VGG16
|
07+12
|
70.0%
|
[td]
method
|
data
|
VOC 2010 mAP
|
FRCN,VGG16
|
12
|
66.1%
|
FRCN,VGG16
|
07++12
|
68.8%
|
[td]
method
|
data
|
VOC 2012 mAP
|
FRCN,VGG16
|
12
|
65.7%
|
FRCN,VGG16
|
07++12
|
68.4%
|
DeepBox
MR-CNN
[td]
Model
|
Trained on
|
VOC 2007 mAP
|
VGG-net
|
07+12
|
78.2%
|
VGG-net
|
07
|
74.9%
|
[td]
Model
|
Trained on
|
VOC 2012 mAP
|
VGG-net
|
07+12
|
73.9%
|
VGG-net
|
12
|
70.7%
|
Faster R-CNN
[td]
training data |
test data
|
mAP
|
time/img
|
|
Faster RCNN, VGG-16
|
07
|
VOC 2007 test
|
69.9%
|
198ms
|
Faster RCNN, VGG-16
|
07+12
|
VOC 2007 test
|
73.2%
|
198ms
|
Faster RCNN, VGG-16
|
12
|
VOC 2007 test
|
67.0%
|
198ms
|
Faster RCNN, VGG-16
|
07++12
|
VOC 2007 test
|
70.4%
|
198ms
|
YOLO
DenseBox
SSD
Inside-Outside Net
[td]
Method
|
R
|
S
|
W
|
D
|
Train
|
mAP
|
FRCN
|
07+12
|
70.0
|
||||
RPN
|
07+12
|
73.2
|
||||
MR-CNN
|
√
|
07+12 |
78.2
|
|||
ION
|
07+12
|
74.6
|
||||
ION
|
√
|
07+12 |
75.6
|
|||
ION
|
√
|
√
|
07+12+S
|
76.5
|
||
ION
|
√
|
√
|
√
|
07+12+S |
78.5
|
|
ION
|
√
|
√
|
√
|
√
|
07+12+S
|
79.2
|
[td]
Method
|
R
|
S
|
W
|
D
|
Train
|
mAP
|
FRCN
|
07++12
|
68.4
|
||||
RPN
|
07++12
|
70.4
|
||||
FRCN+YOLO
|
07++12
|
70.4
|
||||
HyperNet
|
07++12
|
71.4
|
||||
MR-CNN
|
√
|
07+12 |
73.9
|
|||
ION
|
√
|
√
|
√
|
√
|
07+12+S
|
76.4
|
G-CNN
Specific Object Deteciton
Tutorials
Codes
Blogs
标签:cto oda tensor rtl wss who pat box red
原文地址:http://www.cnblogs.com/antflow/p/7297752.html