标签:pil port taf 数据转换 ase get parse lis replace
PS:这段内容摘自 http://wiki.jikexueyuan.com/project/tensorflow-zh/how_tos/reading_data.html
一种保存记录的方法可以允许你讲任意的数据转换为TensorFlow所支持的格式, 这种方法可以使TensorFlow的数据集更容易与网络应用架构相匹配。这种建议的方法就是使用TFRecords文件,TFRecords文件包含了tf.train.Example 协议内存块(protocol buffer)(协议内存块包含了字段 Features)。你可以写一段代码获取你的数据, 将数据填入到Example协议内存块(protocolbuffer),将协议内存块序列化为一个字符串, 并且通过tf.python_io.TFRecordWriterclass写入到TFRecords文件。tensorflow/g3doc/how_tos/reading_data/convert_to_records.py就是这样的一个例子。
从TFRecords文件中读取数据,
可以使用tf.TFRecordReader的tf.parse_single_example解析器。这个parse_single_example操作可以将Example协议内存块(protocolbuffer)解析为张量。
MNIST的例子就使用了convert_to_records 所构建的数据。
请参看tensorflow/g3doc/how_tos/reading_data/fully_connected_reader.py,
adjust_pic.py
单纯的转换图片大小
pic2tfrecords.py
将图片保存成TFRecord
tfrecords2data.py
从TFRecord中读取并保存成图片
train_list.txt_bak 中的内容如下:
image_1093.jpg 13
image_0805.jpg 10
标签:pil port taf 数据转换 ase get parse lis replace
原文地址:http://www.cnblogs.com/antflow/p/7299029.html