码迷,mamicode.com
首页 > 其他好文 > 详细

Links of All in Twente(Updatesd Aug,7th)

时间:2017-08-08 19:35:10      阅读:124      评论:0      收藏:0      [点我收藏+]

标签:dso   exe   eth   learning   stat   eem   imp   UI   examples   

Tutorials for Recommender Systems:

1.Implementing your own recommender systems in python

2.Beginners‘ guide to Non-negative Matrix Factorization

3.Alternating Least Square Method for Collabrative Filtering

4.An introductory Recommender System Tutorial

5.A gentle introduction to recommender systems with implicit feedback

6.An inplicit feedback recommender for the movielens dataset

7.Recommending Movies at scale(Python)

 


Websites of datasets:

1.Four Square Data Set

2.Movielens Dataset

3.Kaggle Dataset(seems something is wrong with it....)

 


 

Some Materials on Github about Tensor Flow 

1.TensorFlow Examples

2.This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code and solutions to the exercises in my O‘Reilly book Hands-on Machine Learning with Scikit-Learn and TensorFlow

3.These tutorials are intended for beginners in Deep Learning and TensorFlow

 

Things about WARP theory:

1.Github link: warp.py

2.https://stats.stackexchange.com/questions/141634/implementing-warp-loss-gradient-computation/189811

3.warp-loss-for-implicit-feedback-recommendation

 

Some thing about data splitting:

https://stats.stackexchange.com/questions/146689/how-to-divide-dataset-into-training-and-test-set-in-recommender-systems

To Be Added...

Links of All in Twente(Updatesd Aug,7th)

标签:dso   exe   eth   learning   stat   eem   imp   UI   examples   

原文地址:http://www.cnblogs.com/fassy/p/7132297.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!