标签:stack ret val ber contain epo ios pst else
Time Limit: 2000MS | Memory Limit: 30000K | |
Total Submissions: 25647 | Accepted: 8975 | |
Case Time Limit: 1000MS |
Description
Input
Output
Sample Input
6 M 1 6 C 1 M 2 4 M 2 6 C 3 C 4
Sample Output
1 0 2
Source
题意: 说是有n块砖,编号从1到n,有两种操作,第一是把含有x编号的那一堆砖放到含有编号y的那一堆砖的上面,第二是查询编号为x的砖的下面有多少块砖。用count[x]表示下面有多少块砖。
现在需要把两堆砖合并,显然要用上并查集,可是普通的合并之后如何知道x的下面有多少块砖呢,思考合并的过程,对于一堆砖,移动到另一堆砖上时,上面那一堆上每块砖的count[i]应该加上下面一堆砖的数量,这个操作对于上面一堆砖的根来说是简单的,我使用uset[i]表示连通分量,舒适化时所有的uset[i]为-1,负数代表这个节点为根,1代表这个连通分量的节点总数为1,以样例为例,首先将1放到6上面,即将6合并到1所在的连通分量中,合并的过程中我们知道两个信息,第一是当前连通分量6->1的节点数量为2,6距离1的距离为1,同理,将2放到4上面,这个连通分量节点个数为2,,4到2的距离为1,最后,我们将包含6的这个连通分量合并到包含2的这个连通分量中,此时连通分量数为4,曾经的6->1连通分量的根距离合并后的连通分量的根的距离为2,就是4->2的连通分量的节点数
说了半天有什么用处呢,经过上面这个过程,我们知道了每一个节点到它第一次被合并时的那个根节点的距离,6->1的距离为1,1到4的距离为2,2到4的距离为1,这样我们在查询6的下面有多少块砖时,直接用4(连通分量节点数)-(1+2)(6到根节点的距离)-1
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const int maxn = 30000+10; int fa[maxn]; int rank[maxn]; int dist[maxn]; void init() { for(int i=0; i<maxn; i++) { fa[i]=i; rank[i] = 1; dist[i] = 0; } } int find(int x) { if(x != fa[x]) { int t = fa[x]; fa[x] = find(fa[x]); dist[x] += dist[t];//dis[t]表示t,即x曾经的根节点距离根的距离,x到根的距离为x到t的距离加上t到根的距离 } return fa[x]; } int main() { int n; while(scanf("%d",&n)==1) { init(); char op; while(n--) { cin>>op; int a,b; if(op==‘M‘) { scanf("%d%d",&a,&b); int faA = find(a); int faB = find(b); if(faA != faB) { fa[faB]=faA; dist[faB]=rank[faA];//下面的砖的根距离如今的连通分量的根的距离 rank[faA]+=rank[faB];//节点相加 } } else { scanf("%d",&a); int x = find(a); printf("%d\n",rank[x]-dist[a]-1);//连通分量节点数-根节点的距离-1 } } } return 0; }
自己选的路,跪着也要走完!!!
标签:stack ret val ber contain epo ios pst else
原文地址:http://www.cnblogs.com/wsdestdq/p/7323328.html