码迷,mamicode.com
首页 > 其他好文 > 详细

大数据的开始:安装hadoop

时间:2017-08-10 11:42:23      阅读:241      评论:0      收藏:0      [点我收藏+]

标签:lease   ref   pom   知识   linu   roo   mis   form   mon   

为实现全栈,从今天开始研究Hadoop,个人体会是成为某方面的专家需要从三个方面着手

  • 系统化的知识(需要看书或者比较系统的培训)
  • 碎片化的知识(需要根据关注点具体的深入的了解)
  • 经验的积累(需要遇到问题)

好吧,我们从安装入手。

1.找三个CentOS的虚拟环境,我的是centos 7,大概的规划如下,一个master,两个slave

修改三台机器的/etc/hosts文件

192.168.0.104      master
192.168.0.105      slave1
192.168.0.106      slave2

2.配置ssh互信

在三台机器上输入下面的命令,生成ssh key以及authorized key,为了简单,我是在root用户下操作,大家可以在需要启动hadoop的用户下操作更规范一些

ssh-keygen -t rsa
cd .ssh cp id_rsa.pub authorized_keys

然后将三台机器的authorized_keys合并成一个文件并且复制在三台机器上。比如我的authorized key

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCrtxZC5VB1tyjU4nGy4+Yd//LsT3Zs2gtNtpw6z4bv7VdL6BI0tzFLs8QIHS0Q82BmiXdBIG2fkLZUHZuaAJlkE+GCPHBmQSdlS+ZvUWKFr+vpbzF86RBGwJp1HHs7GtDFtirN3Z/Qh6pKgNLFuFCxIF/Ee4sL50RUAh6wFOY/TRU4XxQissNXd9rhVFrZnOkctfA3Wek4FgNRyT+xUezSW1Vl2GliGc0siI5RCQezDhKwZNHyzY4yyiifeQYL14S4D0RrlCvv+5PIUZUrKznKc1BMYIljxMVOrAs0DsvQ0fkna/Q/pA53cuPhkD4P8ehA/fJuMCTZ+1q/Z2o1WW4j root@master
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDBmuwzWdWI1oEwA8BC2RutAWWeCvFkkH7qYR4pWyMK8Ubkpc5HxB+mqCr24Bgug17bvFdrTdUyABY7GSJpGx3xBIcyh96bBgG9Thnc0k/XT6oO3cTai0jDr74CCTkkXymBwpVkAIlYY/MrdxQAym4gOMnU2celMMpkq7GhFJ7zOZqfI3cdQ6Q9x9LyNP6DcDFp7QQePcGylNpHeZITgABZzozWFyqg1nHi9qfGy3NtXM2lnGF+W+6JR/OtShTWeaxAOwQXt0rDEjHyUZ8JAv95J4sawGrwgWX89oWr4xorR8rMYl0FZz84OtvvNSFm5KR2NRxj8yPZZQKjaJ8nuDGN root@slave1
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDCrRbwk8Xc2EHLNRL25ve3IlLLkshByTXwwWslP61ASNeKhYk2HObGAjL09mOpOmzdbVXJJ6YLDWIKczLSnSt4o5W7bjWQpCh136O9vCupibxCr1q4uJa+qpW69mUhrvREa4hOLvRXCXmz16p0/dOtCnPudF8AgzhezrqI/4yQkLubGZamQauHB8LEd+1VMdjRHWx0j6mQHrcDnqlaIEq8XW4UM2TcmSS7Ztp6q0zzcC39dz/xopwq/WixwQi2z4Ywc++YufXHmyDp/gkqyXG1tHwH9TMQ/kkmD3piEcnrFKDlU8Kk/B1YCnNIKTG5BT9k1JI1qenJ8NxHJ06gtM3J root@slave2

 

3.安装JDK,我们用jdk-7u79-linux-x64.gz版本。

tar xzvf jdk-7u79-linux-x64.gz

修改.bashrc

JAVA_HOME=/hadoop/jdk1.7.0_79
CLASSPATH=.:$JAVA_HOME/jre/lib/rt.jar:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
PATH=$JAVA_HOME/bin:$PATH

export JAVA_HOME CLASSPATH PATH

 

4.安装hadoop并配置

在下面链接下载2.8.1版本,然后解压

http://hadoop.apache.org/releases.html

我把jdk和hadoop都放在/hadoop目录下,然后建立目录

mkdir tmp
mkdir -p hdfs/data
mkdir -p hdfs/name

然后修改核心的几个配置文件。/hadoop/hadoop-2.8.1/etc/hadoop

core-site.xml

[root@master hadoop]# cat core-site.xml 
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
 <property>
        <name>fs.defaultFS</name>
        <value>hdfs://192.168.0.104:9000</value>
    </property>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>file:/hadoop/tmp</value>
    </property>
    <property>
        <name>io.file.buffer.size</name>
        <value>131702</value>
    </property>
</configuration>

 

hdfs-site.xml

[root@master hadoop]# cat hdfs-site.xml 
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
<property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/hadoop/hdfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/hadoop/hdfs/data</value>
    </property>
    <property>
        <name>dfs.replication</name>
        <value>2</value>
    </property>
    <property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>192.168.0.104:9001</value>
    </property>
    <property>
    <name>dfs.webhdfs.enabled</name>
    <value>true</value>
    </property>
</configuration>

 

mapred-site.xml

[root@master hadoop]# cat mapred-site.xml
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>192.168.0.104:10020</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>192.168.0.104:19888</value>
    </property>
<property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.nodemanager.auxservices.mapreduce.shuffle.class</name>
        <value>org.apache.hadoop.mapred.ShuffleHandler</value>
    </property>
    <property>
        <name>yarn.resourcemanager.address</name>
        <value>192.168.0.104:8032</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address</name>
        <value>192.168.0.104:8030</value>
    </property>
    <property>
        <name>yarn.resourcemanager.resource-tracker.address</name>
        <value>192.168.0.104:8031</value>
    </property>
    <property>
        <name>yarn.resourcemanager.admin.address</name>
        <value>192.168.0.104:8033</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address</name>
        <value>192.168.0.104:8088</value>
    </property>
    <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>768</value>
    </property>
 </configuration>

配置hadoop-env.sh、yarn-env.sh中JAVA_HOME

配置slave节点

[root@master hadoop]# cat slaves 
192.168.0.105
192.168.0.106

 

将master节点的软件复制到slave上。

scp -r /hadoop 192.168.0.105:/
scp -r /hadoop 192.168.0.106:/

 

5.格式化

在master节点上进入/hadoop/hadoop-2.8.1/bin目录运行,格式化hdfs系统

./hdfs namenode -format


6.启动,停止

全部启动sbin/start-all.sh,也可以分开sbin/start-dfs.sh、sbin/start-yarn.sh

[root@master sbin]# ./start-all.sh
This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
Starting namenodes on [master]
master: starting namenode, logging to /hadoop/hadoop-2.8.1/logs/hadoop-root-namenode-master.out
192.168.0.106: starting datanode, logging to /hadoop/hadoop-2.8.1/logs/hadoop-root-datanode-slave2.out
192.168.0.105: starting datanode, logging to /hadoop/hadoop-2.8.1/logs/hadoop-root-datanode-slave1.out
Starting secondary namenodes [master]
master: starting secondarynamenode, logging to /hadoop/hadoop-2.8.1/logs/hadoop-root-secondarynamenode-master.out
starting yarn daemons
starting resourcemanager, logging to /hadoop/hadoop-2.8.1/logs/yarn-root-resourcemanager-master.out
192.168.0.105: starting nodemanager, logging to /hadoop/hadoop-2.8.1/logs/yarn-root-nodemanager-slave1.out
192.168.0.106: starting nodemanager, logging to /hadoop/hadoop-2.8.1/logs/yarn-root-nodemanager-slave2.out

 


停止的话,输入命令,sbin/stop-all.sh
输入命令,jps,可以看到相关信息

master上

[root@master bin]# jps
4018 NameNode
4223 SecondaryNameNode
4383 ResourceManager
4686 Jps

slave上

[root@slave2 ~]# jps
3592 NodeManager
3510 DataNode
7173 Jps

 

 

7.访问

要先开放端口或者直接关闭防火墙
(1)输入命令,systemctl stop firewalld.service
(2)浏览器打开http://192.168.0.104:8088/
(3)浏览器打开http://192.168.0.104:50070/

 技术分享

技术分享

 

技术分享

 

大数据的开始:安装hadoop

标签:lease   ref   pom   知识   linu   roo   mis   form   mon   

原文地址:http://www.cnblogs.com/ericnie/p/7337955.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!