码迷,mamicode.com
首页 > 其他好文 > 详细

Asynchronous Methods for Deep Reinforcement Learning(A3C)

时间:2017-08-10 19:24:17      阅读:145      评论:0      收藏:0      [点我收藏+]

标签:force   连续   ble   conf   machine   任务   更新   and   多核   

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." International Conference on Machine Learning. 2016.

 

DeepMind rl系列文章之一。

 

他们提出了一个简单的轻量级框架,使得deep rl能通过异步更新进行训练。在单个多核CPU上只用了一半的训练时间,取得了优于以前模型在GPU上的训练结果。另外,该框架也支持连续输出的控制任务。

 

1.动机

类似于DQN, Double DQN等模型,是一种off-policy的训练方式,需要存储运行过程。他们提出了一种异步框架,能够实现on-policy,能够运用到多种rl模型上,训练时间和硬件要求大大降低,还能提高模型性能。他们自己觉得这个工作做得非常的好。当然,大家也觉得很好。

 

2.方法

(1)好处:作者指出,训练时间的减少量和并行的数量大约成线性。也就是说,learner越多,时间就越少。

(2)作者在one-step Qlearning, one-step Sarsa, n-step Q-learning and advantage actor-critic四个模型上实现了异步算法。在优化算法上,作者用了RMSProp。

Asynchronous Methods for Deep Reinforcement Learning(A3C)

标签:force   连续   ble   conf   machine   任务   更新   and   多核   

原文地址:http://www.cnblogs.com/huangshiyu13/p/7340480.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!