标签:sep lag 思路 red 整数 square 可能性 迷宫 form
目前看来,简单深搜题大致分为三类题型:
1是连通块问题,求连通块大小和数量。
2是迷宫问题,问地图内放几个坐标,有几个放法。
3是输出路径问题。
1.这个问题的经典例题是计算水塘(pku-2386 lake counting)
例题:
Input
Output
Sample Input
10 12 W........WW. .WWW.....WWW ....WW...WW. .........WW. .........W.. ..W......W.. .W.W.....WW. W.W.W.....W. .W.W......W. ..W.......W.
Sample Output
3
Hint
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int M = 111;
char map[M][M];
int d1[M]={1,1, 1,-1,-1,-1,0, 0};
int d2[M]={0,1,-1, 0,-1, 1,1,-1};
int m,n;
void dfs(int x,int y){
map[x][y]=‘.‘;
for(int i=0;i<=7;i++){
int tx=x+d1[i];
int ty=y+d2[i];
if(tx>=0&&tx<=m&&tx>=0&&ty<=n&&map[tx][ty]==‘W‘){
dfs(tx,ty);
}
}
return ;
}
int main(){
while(cin>>m>>n){
int res=0;
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
cin>>map[i][j];
}
}
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(map[i][j]==‘W‘){
dfs(i,j); res++;
}
}
}
cout<<res<<endl;
}
return 0;
}
这题的思路就是在主函数写个for循环,先找到满足条件的点,以此为起点,对所有接下来的点进行深搜,搜索过的点
要记得计数和标记(因为只是计数,不是记录可能性,所以不需要回溯)。
2.迷宫类问题一般都是用几个数组记录条件,每走一遍就判断数组中是否已经标记过这行或这列。
例题:
Input
Output
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int M = 11;
char map[M][M];
int vis[M];
int res=0,flag=0;
int n,k;
void dfs(int row){
if(flag==k) {res++; return ;}
if(row>n) return;
for(int i=1;i<=n;i++){
if(map[row][i]==‘#‘&&!vis[i]){
vis[i]=1;
flag++;
dfs(row+1);
vis[i]=0;
flag--;
}
}
dfs(row+1);
}
int main(){
while(cin>>n>>k){
memset(vis,0,sizeof(vis));
if(n==-1&&k==-1) break;
res=0;flag=0;
for(int i=1;i<=n;i++){
for(int k=1;k<=n;k++){
cin>>map[i][k];
}
}
dfs(1); //从第一行开始
cout<<res<<endl;
}
return 0;
}
3.简单的路径输出其实就是每深搜一步,就用数组记录一下当前值,判断搜到最后一步后,将数组遍历输出即可。
例题:hdu-2181 哈密顿绕行世界问题
Input前20行的第i行有3个数,表示与第i个城市相邻的3个城市.第20行以后每行有1个数m,m<=20,m>=1.m=0退出.
Output输出从第m个城市出发经过每个城市1次又回到m的所有路线,如有多条路线,按字典序输出,每行1条路线.每行首先输出是第几条路线.然后个一个: 后列出经过的城市.参看Sample output
Sample Input
2 5 20 1 3 12 2 4 10 3 5 8 1 4 6 5 7 19 6 8 17 4 7 9 8 10 16 3 9 11 10 12 15 2 11 13 12 14 20 13 15 18 11 14 16 9 15 17 7 16 18 14 17 19 6 18 20 1 13 19 5 0
Sample Output
1: 5 1 2 3 4 8 7 17 18 14 15 16 9 10 11 12 13 20 19 6 5 2: 5 1 2 3 4 8 9 10 11 12 13 20 19 18 14 15 16 17 7 6 5 3: 5 1 2 3 10 9 16 17 18 14 15 11 12 13 20 19 6 7 8 4 5 4: 5 1 2 3 10 11 12 13 20 19 6 7 17 18 14 15 16 9 8 4 5 5: 5 1 2 12 11 10 3 4 8 9 16 15 14 13 20 19 18 17 7 6 5 6: 5 1 2 12 11 15 14 13 20 19 18 17 16 9 10 3 4 8 7 6 5 7: 5 1 2 12 11 15 16 9 10 3 4 8 7 17 18 14 13 20 19 6 5 8: 5 1 2 12 11 15 16 17 18 14 13 20 19 6 7 8 9 10 3 4 5 9: 5 1 2 12 13 20 19 6 7 8 9 16 17 18 14 15 11 10 3 4 5 10: 5 1 2 12 13 20 19 18 14 15 11 10 3 4 8 9 16 17 7 6 5 11: 5 1 20 13 12 2 3 4 8 7 17 16 9 10 11 15 14 18 19 6 5 12: 5 1 20 13 12 2 3 10 11 15 14 18 19 6 7 17 16 9 8 4 5 13: 5 1 20 13 14 15 11 12 2 3 10 9 16 17 18 19 6 7 8 4 5 14: 5 1 20 13 14 15 16 9 10 11 12 2 3 4 8 7 17 18 19 6 5 15: 5 1 20 13 14 15 16 17 18 19 6 7 8 9 10 11 12 2 3 4 5 16: 5 1 20 13 14 18 19 6 7 17 16 15 11 12 2 3 10 9 8 4 5 17: 5 1 20 19 6 7 8 9 10 11 15 16 17 18 14 13 12 2 3 4 5 18: 5 1 20 19 6 7 17 18 14 13 12 2 3 10 11 15 16 9 8 4 5 19: 5 1 20 19 18 14 13 12 2 3 4 8 9 10 11 15 16 17 7 6 5 20: 5 1 20 19 18 17 16 9 10 11 15 14 13 12 2 3 4 8 7 6 5 21: 5 4 3 2 1 20 13 12 11 10 9 8 7 17 16 15 14 18 19 6 5 22: 5 4 3 2 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 23: 5 4 3 2 12 11 10 9 8 7 6 19 18 17 16 15 14 13 20 1 5 24: 5 4 3 2 12 13 14 18 17 16 15 11 10 9 8 7 6 19 20 1 5 25: 5 4 3 10 9 8 7 6 19 20 13 14 18 17 16 15 11 12 2 1 5 26: 5 4 3 10 9 8 7 17 16 15 11 12 2 1 20 13 14 18 19 6 5 27: 5 4 3 10 11 12 2 1 20 13 14 15 16 9 8 7 17 18 19 6 5 28: 5 4 3 10 11 15 14 13 12 2 1 20 19 18 17 16 9 8 7 6 5 29: 5 4 3 10 11 15 14 18 17 16 9 8 7 6 19 20 13 12 2 1 5 30: 5 4 3 10 11 15 16 9 8 7 17 18 14 13 12 2 1 20 19 6 5 31: 5 4 8 7 6 19 18 17 16 9 10 3 2 12 11 15 14 13 20 1 5 32: 5 4 8 7 6 19 20 13 12 11 15 14 18 17 16 9 10 3 2 1 5 33: 5 4 8 7 17 16 9 10 3 2 1 20 13 12 11 15 14 18 19 6 5 34: 5 4 8 7 17 18 14 13 12 11 15 16 9 10 3 2 1 20 19 6 5 35: 5 4 8 9 10 3 2 1 20 19 18 14 13 12 11 15 16 17 7 6 5 36: 5 4 8 9 10 3 2 12 11 15 16 17 7 6 19 18 14 13 20 1 5 37: 5 4 8 9 16 15 11 10 3 2 12 13 14 18 17 7 6 19 20 1 5 38: 5 4 8 9 16 15 14 13 12 11 10 3 2 1 20 19 18 17 7 6 5 39: 5 4 8 9 16 15 14 18 17 7 6 19 20 13 12 11 10 3 2 1 5 40: 5 4 8 9 16 17 7 6 19 18 14 15 11 10 3 2 12 13 20 1 5 41: 5 6 7 8 4 3 2 12 13 14 15 11 10 9 16 17 18 19 20 1 5 42: 5 6 7 8 4 3 10 9 16 17 18 19 20 13 14 15 11 12 2 1 5 43: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 44: 5 6 7 8 9 16 17 18 19 20 1 2 12 13 14 15 11 10 3 4 5 45: 5 6 7 17 16 9 8 4 3 10 11 15 14 18 19 20 13 12 2 1 5 46: 5 6 7 17 16 15 11 10 9 8 4 3 2 12 13 14 18 19 20 1 5 47: 5 6 7 17 16 15 11 12 13 14 18 19 20 1 2 3 10 9 8 4 5 48: 5 6 7 17 16 15 14 18 19 20 13 12 11 10 9 8 4 3 2 1 5 49: 5 6 7 17 18 19 20 1 2 3 10 11 12 13 14 15 16 9 8 4 5 50: 5 6 7 17 18 19 20 13 14 15 16 9 8 4 3 10 11 12 2 1 5 51: 5 6 19 18 14 13 20 1 2 12 11 15 16 17 7 8 9 10 3 4 5 52: 5 6 19 18 14 15 11 10 9 16 17 7 8 4 3 2 12 13 20 1 5 53: 5 6 19 18 14 15 11 12 13 20 1 2 3 10 9 16 17 7 8 4 5 54: 5 6 19 18 14 15 16 17 7 8 9 10 11 12 13 20 1 2 3 4 5 55: 5 6 19 18 17 7 8 4 3 2 12 11 10 9 16 15 14 13 20 1 5 56: 5 6 19 18 17 7 8 9 16 15 14 13 20 1 2 12 11 10 3 4 5 57: 5 6 19 20 1 2 3 10 9 16 15 11 12 13 14 18 17 7 8 4 5 58: 5 6 19 20 1 2 12 13 14 18 17 7 8 9 16 15 11 10 3 4 5 59: 5 6 19 20 13 12 11 10 9 16 15 14 18 17 7 8 4 3 2 1 5 60: 5 6 19 20 13 14 18 17 7 8 4 3 10 9 16 15 11 12 2 1 5
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int Max = 111;
int map[Max][Max];
int vis[Max];
int way[Max];
int m,cas;
void dfs(int x,int len){
for(int j=1;j<=3;j++){
int u=map[x][j];
if(u==m&&len==20)
{
cout<<cas<<": "<<m<<" ";
cas++;
for(int k=1;k<20;k++)
cout<<way[k]<<" ";
cout<<m<<endl;
}
if(!vis[u]){
vis[u]=1;
way[len]=u;
dfs(u,len+1);
vis[u]=0;
}
}
}
int main(){
for(int i=1;i<=20;i++){
for(int j=1;j<=3;j++){
cin>>map[i][j];
}
}
while((cin>>m),m){
cas=1;
memset(vis,0,sizeof(vis));
vis[m]=1;
dfs(m,1);
}
return 0;
}
标签:sep lag 思路 red 整数 square 可能性 迷宫 form
原文地址:http://www.cnblogs.com/zmin/p/7340464.html