标签:逻辑 读取 ice ams logs 参数 benchmark star array
策略名称:NATR策略
关键词:规范真实波幅、价格突破。
NATR,是对ATR指标进行了标准化。主要应用于了解价格的震荡幅度和节奏,在窄幅整理行情中用于寻找突破时机。本策略在当前价格高于之前价格一定倍数NATR时全仓买入,低于一定倍数NATR时全仓卖出。
方法:
1)利用规范化的真实波幅来构造上下轨;
2)价格突破上轨买入;
3)价格突破下轨卖出。
代码
# !/usr/bin/env python # -*- coding: utf-8 -*- # 策略代码总共分为三大部分,1)PARAMS变量 2)initialize函数 3)handle_data函数 # 请根据指示阅读。或者直接点击运行回测按钮,进行测试,查看策略效果。 # 策略名称:NATR策略 # 关键词:规范真实波幅、价格突破。 # 方法: # 1)利用规范化的真实波幅来构造上下轨; # 2)价格突破上轨买入; # 3)价格突破下轨卖出。 import numpy as np import talib # 阅读1,首次阅读可跳过: # PARAMS用于设定程序参数,回测的起始时间、结束时间、滑点误差、初始资金和持仓。 # 可以仿照格式修改,基本都能运行。如果想了解详情请参考新手学堂的API文档。 PARAMS = { "start_time": "2017-02-01 00:00:00", # 回测起始时间 "end_time": "2017-08-01 00:00:00", # 回测结束时间 "slippage": 0.003, # # 此处“slippage"包含佣金(千二)+交易滑点(千一) "account_initial": {"huobi_cny_cash": 100000, "huobi_cny_btc": 0}, # 设置账户初始状态 } # 阅读2,遇到不明白的变量可以跳过,需要的时候回来查阅: # initialize函数是两大核心函数之一(另一个是handle_data),用于初始化策略变量。 # 策略变量包含:必填变量,以及非必填(用户自己方便使用)的变量 def initialize(context): # 设置回测频率, 可选:"1m", "5m", "15m", "30m", "60m", "4h", "1d", "1w" context.frequency = "4h" # 设置回测基准, 比特币:"huobi_cny_btc", 莱特币:"huobi_cny_ltc", 以太坊:"huobi_cny_eth" context.benchmark = "huobi_cny_btc" # 设置回测标的, 比特币:"huobi_cny_btc", 莱特币:"huobi_cny_ltc", 以太坊:"huobi_cny_eth" context.security = "huobi_cny_btc" # 设定NATR的参数 # NATR算法回看天数,此处设置为10天 context.user_data.natr_period = 10 # 当前价格与之前1天的价格相比较 context.user_data.pre_period = 1 # 多头NATR的倍数 context.user_data.long_multi = 0.1 # 空头NATR的倍数 context.user_data.short_multi = 0.1 # 至此initialize函数定义完毕。 # 阅读3,策略核心逻辑: # handle_data函数定义了策略的执行逻辑,按照frequency生成的bar依次读取并执行策略逻辑,直至程序结束。 # handle_data和bar的详细说明,请参考新手学堂的解释文档。 def handle_data(context): # 获取回看时间窗口内的历史数据 hist = context.data.get_price(context.security, count=context.user_data.natr_period + 1, frequency="1d") if len(hist.index) < context.user_data.natr_period + 1: context.log.warn("bar的数量不足, 等待下一根bar...") return # 收盘价 close = np.array(hist["close"]) # 最高价 high = np.array(hist["high"]) # 最低价 low = np.array(hist["low"]) # 使用talib计算NATR try: # 获取最新的NATR值 natr = talib.NATR(high, low, close, timeperiod=context.user_data.natr_period)[-1] except: context.log.error("计算ATR时出现错误...") return # 获取最新价格 current_price = context.data.get_current_price(context.security) # 获取context.user_data.pre_period个bar前的价格 prev_price = close[-(context.user_data.pre_period + 1)] # 计算上下轨 upper = prev_price + context.user_data.long_multi * natr lower = prev_price - context.user_data.short_multi * natr context.log.info("当前价格=%s元, 上轨=%s元, 下轨=%s元" % (current_price, upper, lower)) # 如果当前价格比之前价格低1个NATR,产生卖出信号 if current_price < lower: context.log.info("价格超过了下轨,产生卖出信号") # 若持有仓位,则全仓卖出 if context.account.huobi_cny_btc >= HUOBI_CNY_BTC_MIN_ORDER_QUANTITY: context.log.info("正在卖出 %s" % context.security) context.log.info("卖出数量为 %s" % context.account.huobi_cny_btc) context.order.sell_limit(context.security, quantity=str(context.account.huobi_cny_btc), price=str(close[-1] * 0.98)) else: context.log.info("仓位不足,无法卖出") # 如果当前价格比之前价格高1个NATR,产生买入信号 elif current_price > upper: context.log.info("价格超过了上轨,产生买入信号") # 若持有现金,则全仓买入 if context.account.huobi_cny_cash >= HUOBI_CNY_BTC_MIN_ORDER_CASH_AMOUNT: context.log.info("正在买入 %s" % context.security) context.log.info("下单金额为 %s 元" % context.account.huobi_cny_cash) context.order.buy_limit(context.security, quantity=str(context.account.huobi_cny_cash/close[-1]*0.98), price=str(close[-1]*1.02)) else: context.log.info("现金不足,无法下单") else: context.log.info("无交易信号,进入下一根bar")
回测
标签:逻辑 读取 ice ams logs 参数 benchmark star array
原文地址:http://www.cnblogs.com/fangbei/p/wequant-strategy-natr.html