标签:分析 3.1 cap frame ring 图灵 block 高斯 样本
华电北风吹
日期:2015/12/12
朴素贝叶斯算法和高斯判别分析一样同属于生成模型。但朴素贝叶斯算法须要特征条件独立性如果,即样本各个特征之间相互独立。
一、朴素贝叶斯模型
朴素贝叶斯算法通过训练数据集学习联合概率分布
因为朴素贝叶斯算法没有如果特征的分布,因此须要将每一个特征量化为离散型变量,然后学习各个特征水平下的条件概率。
如果各个特征
可是,为了使朴素贝叶斯算法变得简单点—主要是降低參数个数,就强加了一个条件概率分布的独立性如果(详细如式1-2)
这样须要学习的參数个数就变为
二、朴素贝叶斯參数预计
在条件独立性如果下,贝叶斯模型的參数学习就简化为类别先验概率
1、极大似然预计
对于训练数据集
结合
2、古德-图灵预计
主要用于解决统计样本不足的概率预计问题,主要思想是在统计中相信可靠的统计数据,而对不可信的统计数据打折扣的一种概率预计方法。同一时候将折扣出来的那一小部分概率给予为看见的事件。
3、贝叶斯预计(拉普拉斯光滑)
在公式2-2和2-3中。会出现分子分母同为0的情况。解决这样的情况的方案例如以下:
当中
三、朴素贝叶斯决策方法—最大后验概率
对于測试数据
採用后验概率最大的类别作为模型输出类别。
如今细致想想感觉朴素贝叶斯跟k-means逻辑上的思路还是比較接近的。
标签:分析 3.1 cap frame ring 图灵 block 高斯 样本
原文地址:http://www.cnblogs.com/gccbuaa/p/7344327.html