标签:变量 日志 占用 boa 解析 embedding 可视化 summary 分布
首先向大家和《TensorFlow实战》的作者说句不好意思。我现在看的书是《TensorFlow实战》。但从TF024开始,我在学习笔记的参考资料里一直写的是《TensorFlow实践》,我自己粗心搞错了,希望不至于对大家造成太多误导。
TensorBoard,TensorFlow官方可视化工具。展示模型训练过程各种汇总数据。标量(Scalars)、图片(Images)、音频(audio)、计算图(Graphs)、数据分布(Distributions)、直方图(Histograms)、嵌入向量(Embeddings)。TensorBoard展示数据,执行TensorFlow计算图过程,各种类型数据汇总并记录到日志文件。TensorBoard读取日志文件,解析数据,生成数据可视化Web页,浏览器观察各种汇总数据。
载入TesnsorFlow,设置训练最大步数1000,学习速率0.001,dropout保留比率0.9。设置MNIST数据下载地址data_dir、汇总数据日志存放路径log_dir。日志路径log_dir存所有汇总数据。
input_data.read_data_sets下载MNIST数据,创建TensorFlow默认Session。
with tf.name_scope限定命名空间。定义输入x、y placeholder。输入一维数据变形28x28图片储存到tensor,tf.summary.image汇总图片数据TensorBoard展示。
定义神经网络模型参数初始化方法,权重用truncated_normal初始化,偏置赋值0.1。
定义Variable变量数据汇总函数,计算Variable mean、stddev、max、min,tf.summary.scalar记录、汇总。tf.summary.histogram记录变量var直方图数据。
设计MLP多层神经网络训练数据,每一层汇总模型参数数据。定义创建一层神经网络数据汇总函数nn_layer。输入参数,输入数据input_tensor、输入维度input_dim、输出维度output_dim、层名称layer_name。激活函数act用ReLU。初始化神经网络权重、偏置,用variable_summaries汇总variable数据。输入,矩阵乘法,加偏置,未激活结果用tf.summary.histogram统计直方图。用激活函数后,tf.summary.histogram再统计一次。
nn_layer创建一层神经网络,输入维度图片尺寸28x28=784,输出维度隐藏节点数500。创建Dropout层,用tf.summary.scalar记录keep_prob。用nn_layer定义神经网络输出层,输入维度为上层隐含节点数500,输出维度类别数10,激活涵数全等映射identity。
tf.nn.softmax_cross_entropy_with_logits()对前面输出层结果Softmax处理,计算交叉熵损失cross_entropy。计算平均损失,tf.summary.scalar统计汇总。
Adma优化器优化损失。统计预测正确样本数,计算正确率accury, tf.summary.scalar统计汇总accuracy。
tf.summary.merger_all()获取所有汇总操作。定义两个tf.summary.FileWriter(文件记录器)在不同子目录,分别存放训练和测试日志数据。Session计算图sess.graph加入训练过程记录器,TensorBoard GRAPHS窗口展示整个计算图可视化效果。tf.global_variables_initializer().run()初始化全部变量。
定义feed_dict损失函数。先判断训练标记,True,从mnist.train获取一个batch样本,设置dropout值;False,获取测试数据,设置keep_prob 1,没有dropout效果。
实际执行具体训练、测试、日志记录操作。tf.train.Saver()创建模型保存器。进入训练循环,每隔10步执行merged(数据汇总)、accuracy(求测试集预测准确率)操作,test_writer.add_sumamry将汇总结果summary和循环步数i写入日志文件。每隔100步,tf.RunOptions定义TensorFlow运行选项,设置trace_lever FULL_TRACE。tf.RunMetadata()定义TensorFlow运行元信息,记录训练运算时间和内存占用等信息。执行merged数据汇总操作,train_step训练操作,汇总结果summary、训练元信息run_metadata添加到train_writer。执行merged、train_step操作,添加summary到train_writer。所有训练全部结束,关闭train_writer、test_writer。
切换Linux命令行,执行TensorBoard程序,--logdir指定TensorFlow日志路径,TensorBoard自动生成所有汇总数据可视化结果。
tensorboard --logdir=/tmp/tensorflow/mnist/logs/mnist_with_summaries
复制网址到浏览器。
打开标量SCALARS窗口,打开accuracy图表。调整Smoothing参数,控制曲线平滑处理,数值越小越接近实际值,波动大;数值越大曲线越平缓。图表下方按钮放大图片,右边按钮调整坐标轴范围。
切换图像IMAGES窗口,可以看到所有tf.summary.image()汇总数据。
计算图GRAPHS窗口,整个TensorFlow计算图结构。网络forward inference流程,backward训练更新参数流程。实线代表数据依赖关系,虚线代表控制条件依赖关系。节点窗口,看属性、输入、输出及tensor尺寸。
"+"按钮,展示node内部细节。所有同一命名空间节点被折叠一起。右键单击节点选择删除。
切换配色风络,基于结构,同结构节点同颜色;基于运算硬件,同运算硬件节点同颜色。
Session runs,选择run_metadata训练元信息。
切换DISTRIBUTIONS窗口,看各个神经网络层输出分布,激活函数前后结果。看看有没有被屏蔽节点(dead neurons)。转为直方图。
EMBEDDINGS窗口,降维嵌入向量可视化效果。tf.save.Saver保存整个模型,TensorBoard自动对模型所有二维Variable可视化(只有Variable可以被保存,Tensor不行)。选择T-SNE或PCA算法对数据列(特征)降维,在3D、2D坐标可视化展示。对Word2Vec计算或Language Model非常有用。
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data max_steps=1000 learning_rate=0.001 dropout=0.9 data_dir=‘/tmp/tensorflow/mnist/input_data‘ log_dir=‘/tmp/tensorflow/mnist/logs/mnist_with_summaries‘ # Import data mnist = input_data.read_data_sets(data_dir,one_hot=True) sess = tf.InteractiveSession() # Create a multilayer model. # Input placeholders with tf.name_scope(‘input‘): x = tf.placeholder(tf.float32, [None, 784], name=‘x-input‘) y_ = tf.placeholder(tf.float32, [None, 10], name=‘y-input‘) with tf.name_scope(‘input_reshape‘): image_shaped_input = tf.reshape(x, [-1, 28, 28, 1]) tf.summary.image(‘input‘, image_shaped_input, 10) # We can‘t initialize these variables to 0 - the network will get stuck. def weight_variable(shape): """Create a weight variable with appropriate initialization.""" initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): """Create a bias variable with appropriate initialization.""" initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def variable_summaries(var): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope(‘summaries‘): mean = tf.reduce_mean(var) tf.summary.scalar(‘mean‘, mean) with tf.name_scope(‘stddev‘): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar(‘stddev‘, stddev) tf.summary.scalar(‘max‘, tf.reduce_max(var)) tf.summary.scalar(‘min‘, tf.reduce_min(var)) tf.summary.histogram(‘histogram‘, var) def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): """Reusable code for making a simple neural net layer. It does a matrix multiply, bias add, and then uses relu to nonlinearize. It also sets up name scoping so that the resultant graph is easy to read, and adds a number of summary ops. """ # Adding a name scope ensures logical grouping of the layers in the graph. with tf.name_scope(layer_name): # This Variable will hold the state of the weights for the layer with tf.name_scope(‘weights‘): weights = weight_variable([input_dim, output_dim]) variable_summaries(weights) with tf.name_scope(‘biases‘): biases = bias_variable([output_dim]) variable_summaries(biases) with tf.name_scope(‘Wx_plus_b‘): preactivate = tf.matmul(input_tensor, weights) + biases tf.summary.histogram(‘pre_activations‘, preactivate) activations = act(preactivate, name=‘activation‘) tf.summary.histogram(‘activations‘, activations) return activations hidden1 = nn_layer(x, 784, 500, ‘layer1‘) with tf.name_scope(‘dropout‘): keep_prob = tf.placeholder(tf.float32) tf.summary.scalar(‘dropout_keep_probability‘, keep_prob) dropped = tf.nn.dropout(hidden1, keep_prob) # Do not apply softmax activation yet, see below. y = nn_layer(dropped, 500, 10, ‘layer2‘, act=tf.identity) with tf.name_scope(‘cross_entropy‘): # The raw formulation of cross-entropy, # # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)), # reduction_indices=[1])) # # can be numerically unstable. # # So here we use tf.nn.softmax_cross_entropy_with_logits on the # raw outputs of the nn_layer above, and then average across # the batch. diff = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_) with tf.name_scope(‘total‘): cross_entropy = tf.reduce_mean(diff) tf.summary.scalar(‘cross_entropy‘, cross_entropy) with tf.name_scope(‘train‘): train_step = tf.train.AdamOptimizer(learning_rate).minimize( cross_entropy) with tf.name_scope(‘accuracy‘): with tf.name_scope(‘correct_prediction‘): correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) with tf.name_scope(‘accuracy‘): accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar(‘accuracy‘, accuracy) # Merge all the summaries and write them out to /tmp/mnist_logs (by default) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(log_dir + ‘/train‘, sess.graph) test_writer = tf.summary.FileWriter(log_dir + ‘/test‘) tf.global_variables_initializer().run() # Train the model, and also write summaries. # Every 10th step, measure test-set accuracy, and write test summaries # All other steps, run train_step on training data, & add training summaries def feed_dict(train): """Make a TensorFlow feed_dict: maps data onto Tensor placeholders.""" if train: xs, ys = mnist.train.next_batch(100) k = dropout else: xs, ys = mnist.test.images, mnist.test.labels k = 1.0 return {x: xs, y_: ys, keep_prob: k} saver = tf.train.Saver() for i in range(max_steps): if i % 10 == 0: # Record summaries and test-set accuracy summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False)) test_writer.add_summary(summary, i) print(‘Accuracy at step %s: %s‘ % (i, acc)) else: # Record train set summaries, and train if i % 100 == 99: # Record execution stats run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True), options=run_options, run_metadata=run_metadata) train_writer.add_run_metadata(run_metadata, ‘step%03d‘ % i) train_writer.add_summary(summary, i) saver.save(sess, log_dir+"/model.ckpt", i) print(‘Adding run metadata for‘, i) else: # Record a summary summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True)) train_writer.add_summary(summary, i) train_writer.close() test_writer.close()
参考资料:
《TensorFlow实战》
欢迎付费咨询(150元每小时),我的微信:qingxingfengzi
标签:变量 日志 占用 boa 解析 embedding 可视化 summary 分布
原文地址:http://www.cnblogs.com/libinggen/p/7349560.html