标签:技巧 insert iostream void graph struct build ret tar
二次联通门 : luogu P2495 [SDOI2011]消耗战
/* luogu P2495 [SDOI2011]消耗战 虚树+树形dp 首先对原图构建出虚树 在建图的时候处理出最小值 转移即可 小技巧 在dp的过程中可以顺便把边表清空 将边结构体封装可方便的建多张图 */ #include <cstdio> #include <iostream> #include <cstring> #include <algorithm> #define INF 1e17 inline void read (int &now) { register char c = getchar (); for (now = 0; !isdigit (c); c = getchar ()); for (; isdigit (c); now = now * 10 + c - ‘0‘, c = getchar ()); } #define Max 1000010 struct Edge { int to, next, w; Edge (int _x, int _y, int _z) : to (_x), next (_y), w (_z) {} Edge () {} }; int N, M; long long value[Max]; int dfn[Max], Count; struct Graph { Edge e[Max << 1]; int C; Graph () { C = 0;} int list[Max]; inline void Clear () { C = 0; } inline void Add_Edge (int from, int to, int dis) { if (from == to) return ; e[++ C].to = to; e[C].next = list[from]; list[from] = C; e[C].w = dis; } inline void Add_Edge (int from, int to) { if (from == to) return ; e[++ C].to = to; e[C].next = list[from]; list[from] = C; } }; inline void swap (int &x, int &y) { int now = x; x = y; y = now; } inline long long min (int x, long long y) { return x < y ? x : y; } class Tree_Chain_Get { private : Graph G; int size[Max], chain[Max], father[Max], son[Max]; public : int deep[Max]; void Dfs_1 (int now, int Father) { size[now] = 1; dfn[now] = ++ Count; for (int i = G.list[now]; i; i = G.e[i].next) if (G.e[i].to != Father) { Dfs_1 (G.e[i].to, now); father[now] = Father; size[now] += size[G.e[i].to]; deep[now] = deep[Father] + 1; value[G.e[i].to] = min (G.e[i].w, value[now]); if (size[son[now]] < size[G.e[i].to]) son[now] = G.e[i].to; } } void Dfs_2 (int now, int point) { chain[now] = point; if (son[now]) Dfs_2 (son[now], point); else return ; for (int i = G.list[now]; i; i = G.e[i].next) if (G.e[i].to != son[now] && G.e[i].to != father[now]) Dfs_2 (G.e[i].to, G.e[i].to); } int Get_Lca (int x, int y) { for (; chain[x] != chain[y]; ) { if (deep[chain[x]] < deep[chain[y]]) swap (x, y); x = father[chain[x]]; } return deep[x] < deep[y] ? x : y; } inline void Insert_edges (const int L) { for (int i = 1, x, y, z; i <= L; ++ i) { read (x), read (y), read (z); G.Add_Edge (x, y, z); G.Add_Edge (y, x, z); } value[1] = INF; deep[1] = 0; Dfs_1 (1, 0); Dfs_2 (1, 1); } }; Tree_Chain_Get Lca; inline bool Comp (const int &x, const int &y) { return dfn[x] < dfn[y]; } class Virtual_Tree { private : Graph T; int Stack[Max], top; long long dp[Max]; int queue[Max]; public : Virtual_Tree () {top = 0;} void Build_Tree () { int M; read (M); for (int i = 1; i <= M; ++ i) read (queue[i]); std :: sort (queue + 1, queue + 1 + M, Comp); int cur = 0; for (int i = 2; i <= M; ++ i) if (Lca.Get_Lca (queue[i], queue[cur]) != queue[cur]) queue[++ cur] = queue[i]; int top = 0; Stack[++ top] = 1; int __lca; T.Clear (); for (int i = 1; i <= cur; ++ i) { __lca = Lca.Get_Lca (Stack[top], queue[i]); for (; ; ) { if (Lca.deep[Stack[top - 1]] <= Lca.deep[__lca]) { T.Add_Edge (__lca, Stack[top]); -- top; if (Stack[top] != __lca) Stack[++ top] = __lca; break; } T.Add_Edge (Stack[top - 1], Stack[top]); -- top; } if (Stack[top] != queue[i]) Stack[++ top] = queue[i]; } top --; for (; top; -- top) T.Add_Edge (Stack[top], Stack[top + 1]); Dp (1); printf ("%lld\n", dp[1]); } void Dp (int now) { long long res = 0; dp[now] = value[now]; for (int i = T.list[now]; i; i = T.e[i].next) { Dp (T.e[i].to); res += dp[T.e[i].to]; } T.list[now] = 0; if (!res) dp[now] = value[now]; else if (res < dp[now]) dp[now] = res; } void Doing (const int &K) { for (int i = 1; i <= K; ++ i) Build_Tree (); } }; Virtual_Tree V_T; int main (int argc, char *argv[]) { read (N); Lca.Insert_edges (N - 1); int K; read (K); V_T.Doing (K); return 0; }
标签:技巧 insert iostream void graph struct build ret tar
原文地址:http://www.cnblogs.com/ZlycerQan/p/7353567.html