标签:dfs tree algo key swap inline print max https
二次联通门 : LibreOJ #2219. 「HEOI2014」大工程
/* LibreOJ #2219. 「HEOI2014」大工程 虚树 + dp 对于每次的关键点建好虚树后 考虑树形dp dp[i] 表示在以i为根的子树路径总长 size[i] 表示在以i为根的子树中关键点的个数 maxn为以i为根的子树中到关键点到根最长的路径长 ans1自己推一推就好 对于ans2 如果i是关键点,则直接用maxn[i]更新答案 否则用maxn[i]+maxn[child[i]]+dis(i,son[i])更新 ans3同理 */ #include <cstdio> #include <iostream> #include <algorithm> #define INF 1e9 #define Max 1000004 const int BUF = 100000100; char Buf[BUF], *buf = Buf; void read (int &now) { for (now = 0; !isdigit (*buf); ++ buf); for (; isdigit (*buf); now = now * 10 + *buf - ‘0‘, ++ buf); } struct Edge { int to, next, w; }; int deep[Max]; inline int min (int a, int b) { return a < b ? a : b; } inline int max (int a, int b) { return a > b ? a : b; } struct Graph { Edge e[Max << 1]; int C, list[Max]; inline void In (int from, int to) { if (from == to) return ; e[++ C].to = to; e[C].next = list[from]; list[from] = C; e[C].w = deep[to] - deep[from]; } inline void Clear () { C = 0;} }; int dfn[Max], Dfs_Clock; inline bool Comp (int a, int b) { return dfn[a] < dfn[b]; } void swap (int &a, int &b) { int now = a; a = b; b = now; } class Tree_Chain_Get { private : Graph G; int size[Max], father[Max], chain[Max], son[Max]; public : void Dfs_1 (int now, int Father) { size[now] = 1, father[now] = Father; deep[now] = deep[Father] + 1, dfn[now] = ++ Dfs_Clock; for (int i = G.list[now]; i; i = G.e[i].next) if (G.e[i].to != Father) { Dfs_1 (G.e[i].to, now); size[now] += size[G.e[i].to]; if (size[son[now]] < size[G.e[i].to]) son[now] = G.e[i].to; } } void Dfs_2 (int now, int point) { chain[now] = point; if (son[now]) Dfs_2 (son[now], point); else return ; for (int i = G.list[now]; i; i = G.e[i].next) if (G.e[i].to != son[now] && G.e[i].to != father[now]) Dfs_2 (G.e[i].to, G.e[i].to); } inline void Insert_edges (const int &M) { for (int i = 1, x, y; i <= M; i ++) { read (x), read (y); G.In (x, y), G.In (y, x); } Dfs_1 (1, 0); Dfs_2 (1, 1); } inline int Get_Lca (int x, int y) { for (; chain[x] != chain[y]; ) { if (deep[chain[x]] < deep[chain[y]]) swap (x, y); x = father[chain[x]]; } return deep[x] < deep[y] ? x : y; } }; Tree_Chain_Get Lca; class Virtual_Tree { private : Graph T; int visit[Max]; int key[Max], Stack[Max], maxn[Max], minn[Max], Total; long long Answer_1, size[Max], dp[Max]; int Answer_2, Answer_3; public : void Dp (int now) { size[now] = visit[now]; dp[now] = 0; minn[now] = visit[now] ? 0 : INF; maxn[now] = visit[now] ? 0 : -INF; int to; for (int i = T.list[now]; i; i = T.e[i].next) { to = T.e[i].to; Dp (to); Answer_1 += (dp[now] + size[now] * T.e[i].w) * size[to] + dp[to] * size[now]; size[now] += size[to]; dp[now] += dp[to] + T.e[i].w * size[to]; Answer_2 = min (Answer_2, minn[now] + minn[to] + T.e[i].w); Answer_3 = max (Answer_3, maxn[now] + maxn[to] + T.e[i].w); minn[now] = min (minn[now], minn[to] + T.e[i].w); maxn[now] = max (maxn[now], maxn[to] + T.e[i].w); } T.list[now] = 0; } void Build_Tree () { int K; read (K); for (int i = 1; i <= K; ++ i) { read (key[i]); visit[key[i]] = 1; } std :: sort (key + 1, key + 1 + K, Comp); int top = 0, lca;register int now; T.Clear (); Stack[++ top] = 1; for (int i = 1; i <= K; ++ i) { now = key[i]; lca = Lca.Get_Lca (now, Stack[top]); if (lca == Stack[top]) { Stack[++ top] = now; continue; } for (; lca == Lca.Get_Lca (now, Stack[top - 1]); ) { T.In (Stack[top - 1], Stack[top]); -- top; lca = Lca.Get_Lca (now, Stack[top]); } T.In (lca, Stack[top]); Stack[top] = lca; Stack[++ top] = now; } for (; -- top; T.In (Stack[top], Stack[top + 1])); Answer_1 = 0, Answer_2 = INF, Answer_3 = -INF; Dp (1); printf ("%lld %d %d\n", Answer_1, Answer_2, Answer_3); for (int i = 1; i <= K; ++ i) visit[key[i]] = 0; } void Doing (const int &K) { for (int i = 1; i <= K; ++ i) Build_Tree (); } }; Virtual_Tree Flandre; int Main () { fread (buf, 1, BUF, stdin); int N, M; read (N); Lca.Insert_edges (N - 1); read (M); Flandre.Doing (M); return 0; } int ZlycerQan = Main (); int main (int argc, char *argv[]) {;}
标签:dfs tree algo key swap inline print max https
原文地址:http://www.cnblogs.com/ZlycerQan/p/7354384.html