码迷,mamicode.com
首页 > 其他好文 > 详细

[HDU5685]2016"百度之星" - 资格赛 Problem A

时间:2017-08-13 20:48:50      阅读:152      评论:0      收藏:0      [点我收藏+]

标签:问题   运算   sci   cpp   pac   复杂度   nbsp   ++   c++   

题目大意:给你一个字符串,和一些问题,每个问题问你[l,r]子串的哈希值是多少。

哈希值计算方法为:$H(s)=\prod _{i=1} ^{i\leq len(s)}(s_i-28)(mod\ 9973)$。

其中$s_i$代表 S[i] 字符的 ASCII 码。

解题思路:我们知道,要算区间[l,r]所有的和,就可以用$O(n)$的时间预处理出数组t,令$t[i]$表示前i个数的和,那么$t[r]-t[l-1]$即为区间[l,r]所有之和,询问时间复杂度$O(1)$,这就是维护前缀和的做法。

那么这道题,我们也可以维护一个前缀,令$t[i]$表示前i个字符的哈希值,然后[l,r]子串的哈希值就为$\frac{t[r]}{t[l-1]}$。

等等,有个取模运算,那这样做不就WA了?没事,我们把$t[r]$除以$t[l-1]$改成$t[r]$乘($t[l-1]$的乘法逆元)即可。计算乘法逆元用扩展欧几里得算法即可。

时间复杂度$O(Tn\log (a+b))$,其中T为数据组数。

注意事项:$t[0]$一定要赋成1,否则你怎么算答案都是0!!!

C++ Code:

#include<cstdio>
#include<cstring>
using namespace std;
#define p 9973
int n;
char s[100004];
int t[100004];
int exGcd(int a,int b,int& x,int& y){
	if(b==0){
		x=1,y=0;
		return a;
	}
	int gcd=exGcd(b,a%b,x,y);
	int q=x;
	x=y;
	y=q-a/b*y;
	return gcd;
}
int calc(int l,int r){
	int x,y;
	exGcd(t[l-1],p,x,y);
	return t[r]*((x%p+p)%p)%p;
}
int main(){
	while(scanf("%d",&n)!=EOF){
		scanf("%s",s+1);
		t[0]=1;
		int len=strlen(s+1);
		for(int i=1;i<=len;++i)t[i]=t[i-1]*(s[i]-28)%p;
		int l,r;
		while(n--){
			scanf("%d%d",&l,&r);
			printf("%d\n",calc(l,r));
		}
	}
	return 0;
}

 

[HDU5685]2016"百度之星" - 资格赛 Problem A

标签:问题   运算   sci   cpp   pac   复杂度   nbsp   ++   c++   

原文地址:http://www.cnblogs.com/Mrsrz/p/7354536.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!