码迷,mamicode.com
首页 > 其他好文 > 详细

MST-prim

时间:2017-08-14 10:05:40      阅读:127      评论:0      收藏:0      [点我收藏+]

标签:ext   graph   i++   struct   img   数组   nim   初始化   需要   

MST(Minimum Spanning Tree,最小生成树)问题有两种通用的解法,Prim算法就是其中之一,它是从点的方面考虑构建一颗MST,大致思想是:设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。

 

用图示和代码说明:

初始状态:

技术分享

设置2个数据结构

lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说明以i为终点的边的最小权值=0,也就是表示i点加入了MST

mst[i]:表示对应lowcost[i]的起点,即说明边<mst[i],i>是MST的一条边,当mst[i]=0表示起点i加入MST

 

我们假设V1是起始点,进行初始化(*代表无限大,即无通路):

 

lowcost[2]=6,lowcost[3]=1,lowcost[4]=5,lowcost[5]=*,lowcost[6]=*

mst[2]=1,mst[3]=1,mst[4]=1,mst[5]=1,mst[6]=1,(所有点默认起点是V1)

 

明显看出,以V3为终点的边的权值最小=1,所以边<mst[3],3>=1加入MST

技术分享

此时,因为点V3的加入,需要更新lowcost数组和mst数组:

 

lowcost[2]=5,lowcost[3]=0,lowcost[4]=5,lowcost[5]=6,lowcost[6]=4

mst[2]=3,mst[3]=0,mst[4]=1,mst[5]=3,mst[6]=3

 

明显看出,以V6为终点的边的权值最小=4,所以边<mst[6],6>=4加入MST

技术分享

 

此时,因为点V6的加入,需要更新lowcost数组和mst数组:

 

lowcost[2]=5,lowcost[3]=0,lowcost[4]=2,lowcost[5]=6,lowcost[6]=0

mst[2]=3,mst[3]=0,mst[4]=6,mst[5]=3,mst[6]=0

 

 

明显看出,以V4为终点的边的权值最小=2,所以边<mst[4],4>=4加入MST

技术分享

 

此时,因为点V4的加入,需要更新lowcost数组和mst数组:

 

lowcost[2]=5,lowcost[3]=0,lowcost[4]=0,lowcost[5]=6,lowcost[6]=0

mst[2]=3,mst[3]=0,mst[4]=0,mst[5]=3,mst[6]=0

 

明显看出,以V2为终点的边的权值最小=5,所以边<mst[2],2>=5加入MST

技术分享

 

此时,因为点V2的加入,需要更新lowcost数组和mst数组:

 

lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=3,lowcost[6]=0

mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=2,mst[6]=0

 

很明显,以V5为终点的边的权值最小=3,所以边<mst[5],5>=3加入MST

 

lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=0,lowcost[6]=0

mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=0,mst[6]=0

 

至此,MST构建成功,如图所示:

技术分享

实现代码如下:

#include<iostream>
#include<fstream>
using  namespace std;

#define MAX 100
#define MAXCOST 0x7fffffff

int graph[MAX][MAX];

int prim(int graph[][MAX], int n)
{
    int lowcost[MAX];
    int mst[MAX];
    int i, j, min, minid, sum = 0;
    for (i = 2; i <= n; i++)
    {
        lowcost[i] = graph[1][i];
        mst[i] = 1;
    }
    mst[1] = 0;
    for (i = 2; i <= n; i++)
    {
        min = MAXCOST;
        minid = 0;
        for (j = 2; j <= n; j++)
        {
            if (lowcost[j] < min && lowcost[j] != 0)
            {
                min = lowcost[j];
                minid = j;
            }
        }
        cout << "V" << mst[minid] << "-V" << minid << "=" << min << endl;
        sum += min;
        lowcost[minid] = 0;
        for (j = 2; j <= n; j++)
        {
            if (graph[minid][j] < lowcost[j])
            {
                lowcost[j] = graph[minid][j];
                mst[j] = minid;
            }
        }
    }
    return sum;
}

int main()
{
    int i, j, k, m, n;
    int x, y, cost;
    ifstream in("input.txt");
    in >> m >> n;//m=顶点的个数,n=边的个数
    //初始化图G
    for (i = 1; i <= m; i++)
    {
        for (j = 1; j <= m; j++)
        {
            graph[i][j] = MAXCOST;
        }
    }
    //构建图G
    for (k = 1; k <= n; k++)
    {
        in >> i >> j >> cost;
        graph[i][j] = cost;
        graph[j][i] = cost;
    }
    //求解最小生成树
    cost = prim(graph, m);
    //输出最小权值和
    cout << "最小权值和=" << cost << endl;
    system("pause");
    return 0;
}

 

MST-prim

标签:ext   graph   i++   struct   img   数组   nim   初始化   需要   

原文地址:http://www.cnblogs.com/Aragaki/p/7355656.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!