标签:read binary crud [] lis term nbsp 情况 存储
ORM 以 QuerySeter 来组织查询,每个返回 QuerySeter 的方法都会获得一个新的 QuerySeter 对象。
基本使用方法:
o := orm.NewOrm() // 获取 QuerySeter 对象,user 为表名 qs := o.QueryTable("user") // 也可以直接使用对象作为表名 user := new(User) qs = o.QueryTable(user) // 返回 QuerySeter
QuerySeter 中用于描述字段和 sql 操作符,使用简单的 expr 查询方法
字段组合的前后顺序依照表的关系,比如 User 表拥有 Profile 的外键,那么对 User 表查询对应的 Profile.Age 为条件,则使用 Profile__Age
注意,字段的分隔符号使用双下划线 __
,除了描述字段, expr 的尾部可以增加操作符以执行对应的 sql 操作。比如 Profile__Age__gt
代表 Profile.Age > 18 的条件查询。
注释后面将描述对应的 sql 语句,仅仅是描述 expr 的类似结果,并不代表实际生成的语句。
qs.Filter("id", 1) // WHERE id = 1 qs.Filter("profile__age", 18) // WHERE profile.age = 18 qs.Filter("Profile__Age", 18) // 使用字段名和 Field 名都是允许的 qs.Filter("profile__age", 18) // WHERE profile.age = 18 qs.Filter("profile__age__gt", 18) // WHERE profile.age > 18 qs.Filter("profile__age__gte", 18) // WHERE profile.age >= 18 qs.Filter("profile__age__in", 18, 20) // WHERE profile.age IN (18, 20) qs.Filter("profile__age__in", 18, 20).Exclude("profile__lt", 1000) // WHERE profile.age IN (18, 20) AND NOT profile_id < 1000
当前支持的操作符号:
后面以 i
开头的表示:大小写不敏感
Filter / Exclude / Condition expr 的默认值
qs.Filter("name", "slene") // WHERE name = ‘slene‘ qs.Filter("name__exact", "slene") // WHERE name = ‘slene‘ // 使用 = 匹配,大小写是否敏感取决于数据表使用的 collation qs.Filter("profile_id", nil) // WHERE profile_id IS NULL
qs.Filter("name__iexact", "slene") // WHERE name LIKE ‘slene‘ // 大小写不敏感,匹配任意 ‘Slene‘ ‘sLENE‘
qs.Filter("name__contains", "slene") // WHERE name LIKE BINARY ‘%slene%‘ // 大小写敏感, 匹配包含 slene 的字符
qs.Filter("name__icontains", "slene") // WHERE name LIKE ‘%slene%‘ // 大小写不敏感, 匹配任意 ‘im Slene‘, ‘im sLENE‘
qs.Filter("profile__age__in", 17, 18, 19, 20) // WHERE profile.age IN (17, 18, 19, 20) ids:=[]int{17,18,19,20} qs.Filter("profile__age__in", ids) // WHERE profile.age IN (17, 18, 19, 20) // 同上效果
qs.Filter("profile__age__gt", 17) // WHERE profile.age > 17 qs.Filter("profile__age__gte", 18) // WHERE profile.age >= 18
qs.Filter("profile__age__lt", 17) // WHERE profile.age < 17 qs.Filter("profile__age__lte", 18) // WHERE profile.age <= 18
qs.Filter("name__startswith", "slene") // WHERE name LIKE BINARY ‘slene%‘ // 大小写敏感, 匹配以 ‘slene‘ 起始的字符串
qs.Filter("name__istartswith", "slene") // WHERE name LIKE ‘slene%‘ // 大小写不敏感, 匹配任意以 ‘slene‘, ‘Slene‘ 起始的字符串
qs.Filter("name__endswith", "slene") // WHERE name LIKE BINARY ‘%slene‘ // 大小写敏感, 匹配以 ‘slene‘ 结束的字符串
qs.Filter("name__iendswithi", "slene") // WHERE name LIKE ‘%slene‘ // 大小写不敏感, 匹配任意以 ‘slene‘, ‘Slene‘ 结束的字符串
qs.Filter("profile__isnull", true) qs.Filter("profile_id__isnull", true) // WHERE profile_id IS NULL qs.Filter("profile__isnull", false) // WHERE profile_id IS NOT NULL
QuerySeter 是高级查询使用的接口,我们来熟悉下他的接口方法
}
每个返回 QuerySeter 的 api 调用时都会新建一个 QuerySeter,不影响之前创建的。
高级查询使用 Filter 和 Exclude 来做常用的条件查询。囊括两种清晰的过滤规则:包含, 排除
用来过滤查询结果,起到 包含条件 的作用
多个 Filter 之间使用 AND
连接
qs.Filter("profile__isnull", true).Filter("name", "slene") // WHERE profile_id IS NULL AND name = ‘slene‘
用来过滤查询结果,起到 排除条件 的作用
使用 NOT
排除条件
多个 Exclude 之间使用 AND
连接
qs.Exclude("profile__isnull", true).Filter("name", "slene") // WHERE NOT profile_id IS NULL AND name = ‘slene‘
自定义条件表达式
cond := orm.NewCondition() cond1 := cond.And("profile__isnull", false).AndNot("status__in", 1).Or("profile__age__gt", 2000) qs := orm.QueryTable("user") qs = qs.SetCond(cond1) // WHERE ... AND ... AND NOT ... OR ... cond2 := cond.AndCond(cond1).OrCond(cond.And("name", "slene")) qs = qs.SetCond(cond2).Count() // WHERE (... AND ... AND NOT ... OR ...) OR ( ... )
限制最大返回数据行数,第二个参数可以设置 Offset
var DefaultRowsLimit = 1000 // ORM 默认的 limit 值为 1000 // 默认情况下 select 查询的最大行数为 1000 // LIMIT 1000 qs.Limit(10) // LIMIT 10 qs.Limit(10, 20) // LIMIT 10 OFFSET 20 注意跟 SQL 反过来的 qs.Limit(-1) // no limit qs.Limit(-1, 100) // LIMIT 18446744073709551615 OFFSET 100 // 18446744073709551615 是 1<<64 - 1 用来指定无 limit 限制 但有 offset 偏移的情况
设置 偏移行数
qs.Offset(20) // LIMIT 1000 OFFSET 20
qs.GroupBy("id", "age") // GROUP BY id,age
参数使用 expr
在 expr 前使用减号 -
表示 DESC
的排列
qs.OrderBy("id", "-profile__age") // ORDER BY id ASC, profile.age DESC qs.OrderBy("-profile__age", "profile") // ORDER BY profile.age DESC, profile_id ASC
对应 sql 的 distinct
语句, 返回不重复的值.
qs.Distinct() // SELECT DISTINCT
关系查询,参数使用 expr
var DefaultRelsDepth = 5 // 默认情况下直接调用 RelatedSel 将进行最大 5 层的关系查询 qs := o.QueryTable("post") qs.RelatedSel() // INNER JOIN user ... LEFT OUTER JOIN profile ... qs.RelatedSel("user") // INNER JOIN user ... // 设置 expr 只对设置的字段进行关系查询 // 对设置 null 属性的 Field 将使用 LEFT OUTER JOIN
依据当前的查询条件,返回结果行数
cnt, err := o.QueryTable("user").Count() // SELECT COUNT(*) FROM USER fmt.Printf("Count Num: %s, %s", cnt, err)
exist := o.QueryTable("user").Filter("UserName", "Name").Exist() fmt.Printf("Is Exist: %s", exist)
依据当前查询条件,进行批量更新操作
num, err := o.QueryTable("user").Filter("name", "slene").Update(orm.Params{ "name": "astaxie", }) fmt.Printf("Affected Num: %s, %s", num, err) // SET name = "astaixe" WHERE name = "slene"
原子操作增加字段值
// 假设 user struct 里有一个 nums int 字段 num, err := o.QueryTable("user").Update(orm.Params{ "nums": orm.ColValue(orm.ColAdd, 100), }) // SET nums = nums + 100
orm.ColValue 支持以下操作
ColAdd // 加 ColMinus // 减 ColMultiply // 乘 ColExcept // 除
依据当前查询条件,进行批量删除操作
num, err := o.QueryTable("user").Filter("name", "slene").Delete() fmt.Printf("Affected Num: %s, %s", num, err) // DELETE FROM user WHERE name = "slene"
用于一次 prepare 多次 insert 插入,以提高批量插入的速度。
var users []*User ... qs := o.QueryTable("user") i, _ := qs.PrepareInsert() for _, user := range users { id, err := i.Insert(user) if err == nil { ... } } // PREPARE INSERT INTO user (`name`, ...) VALUES (?, ...) // EXECUTE INSERT INTO user (`name`, ...) VALUES ("slene", ...) // EXECUTE ... // ... i.Close() // 别忘记关闭 statement
返回对应的结果集对象
All 的参数支持 *[]Type 和 *[]*Type 两种形式的 slice
var users []*User num, err := o.QueryTable("user").Filter("name", "slene").All(&users) fmt.Printf("Returned Rows Num: %s, %s", num, err)
All / Values / ValuesList / ValuesFlat 受到 Limit 的限制,默认最大行数为 1000
可以指定返回的字段:
type Post struct { Id int Title string Content string Status int } // 只返回 Id 和 Title var posts []Post o.QueryTable("post").Filter("Status", 1).All(&posts, "Id", "Title")
对象的其他字段值将会是对应类型的默认值
尝试返回单条记录
var user User err := o.QueryTable("user").Filter("name", "slene").One(&user) if err == orm.ErrMultiRows { // 多条的时候报错 fmt.Printf("Returned Multi Rows Not One") } if err == orm.ErrNoRows { // 没有找到记录 fmt.Printf("Not row found") }
可以指定返回的字段:
// 只返回 Id 和 Title var post Post o.QueryTable("post").Filter("Content__istartswith", "prefix string").One(&post, "Id", "Title")
对象的其他字段值将会是对应类型的默认值
返回结果集的 key => value 值
key 为 Model 里的 Field name,value 的值 以 string 保存
var maps []orm.Params num, err := o.QueryTable("user").Values(&maps) if err == nil { fmt.Printf("Result Nums: %d\n", num) for _, m := range maps { fmt.Println(m["Id"], m["Name"]) } }
返回指定的 Field 数据
TODO: 暂不支持级联查询 RelatedSel 直接返回 Values
但可以直接指定 expr 级联返回需要的数据
var maps []orm.Params num, err := o.QueryTable("user").Values(&maps, "id", "name", "profile", "profile__age") if err == nil { fmt.Printf("Result Nums: %d\n", num) for _, m := range maps { fmt.Println(m["Id"], m["Name"], m["Profile"], m["Profile__Age"]) // map 中的数据都是展开的,没有复杂的嵌套 } }
顾名思义,返回的结果集以slice存储
结果的排列与 Model 中定义的 Field 顺序一致
返回的每个元素值以 string 保存
var lists []orm.ParamsList num, err := o.QueryTable("user").ValuesList(&lists) if err == nil { fmt.Printf("Result Nums: %d\n", num) for _, row := range lists { fmt.Println(row) } }
当然也可以指定 expr 返回指定的 Field
var lists []orm.ParamsList num, err := o.QueryTable("user").ValuesList(&lists, "name", "profile__age") if err == nil { fmt.Printf("Result Nums: %d\n", num) for _, row := range lists { fmt.Printf("Name: %s, Age: %s\m", row[0], row[1]) } }
只返回特定的 Field 值,将结果集展开到单个 slice 里
var list orm.ParamsList num, err := o.QueryTable("user").ValuesFlat(&list, "name") if err == nil { fmt.Printf("Result Nums: %d\n", num) fmt.Printf("All User Names: %s", strings.Join(list, ", ")) }
以例子里的 模型定义 来看下怎么进行关系查询
已经取得了 User 对象,查询 Profile:
user := &User{Id: 1} o.Read(user) if user.Profile != nil { o.Read(user.Profile) }
直接关联查询:
user := &User{} o.QueryTable("user").Filter("Id", 1).RelatedSel().One(user) // 自动查询到 Profile fmt.Println(user.Profile) // 因为在 Profile 里定义了反向关系的 User,所以 Profile 里的 User 也是自动赋值过的,可以直接取用。 fmt.Println(user.Profile.User) // [SELECT T0.`id`, T0.`name`, T0.`profile_id`, T1.`id`, T1.`age` FROM `user` T0 INNER JOIN `profile` T1 ON T1.`id` = T0.`profile_id` WHERE T0.`id` = ? LIMIT 1000] - `1`
通过 User 反向查询 Profile:
var profile Profile err := o.QueryTable("profile").Filter("User__Id", 1).One(&profile) if err == nil { fmt.Println(profile) }
type Post struct { Id int Title string User *User `orm:"rel(fk)"` Tags []*Tag `orm:"rel(m2m)"` }
var posts []*Post num, err := o.QueryTable("post").Filter("User", 1).RelatedSel().All(&posts) if err == nil { fmt.Printf("%d posts read\n", num) for _, post := range posts { fmt.Printf("Id: %d, UserName: %d, Title: %s\n", post.Id, post.User.UserName, post.Title) } } // [SELECT T0.`id`, T0.`title`, T0.`user_id`, T1.`id`, T1.`name`, T1.`profile_id`, T2.`id`, T2.`age` FROM `post` T0 INNER JOIN `user` T1 ON T1.`id` = T0.`user_id` INNER JOIN `profile` T2 ON T2.`id` = T1.`profile_id` WHERE T0.`user_id` = ? LIMIT 1000] - `1`
根据 Post.Title 查询对应的 User:
RegisterModel 时,ORM 也会自动建立 User 中 Post 的反向关系,所以可以直接进行查询
var user User err := o.QueryTable("user").Filter("Post__Title", "The Title").Limit(1).One(&user) if err == nil { fmt.Printf(user) }
设置 rel(m2m) 以后,ORM 会自动创建中间表
type Post struct { Id int Title string User *User `orm:"rel(fk)"` Tags []*Tag `orm:"rel(m2m)"` }
type Tag struct { Id int Name string Posts []*Post `orm:"reverse(many)"` }
一条 Post 纪录可能对应不同的 Tag 纪录,一条 Tag 纪录可能对应不同的 Post 纪录,所以 Post 和 Tag 属于多对多关系,通过 tag name 查询哪些 post 使用了这个 tag
var posts []*Post num, err := dORM.QueryTable("post").Filter("Tags__Tag__Name", "golang").All(&posts)
通过 post title 查询这个 post 有哪些 tag
var tags []*Tag num, err := dORM.QueryTable("tag").Filter("Posts__Post__Title", "Introduce Beego ORM").All(&tags)
LoadRelated 用于载入模型的关系字段,包括所有的 rel/reverse - one/many 关系
ManyToMany 关系字段载入
// 载入相应的 Tags post := Post{Id: 1} err := o.Read(&post) num, err := o.LoadRelated(&post, "Tags")
// 载入相应的 Posts tag := Tag{Id: 1} err := o.Read(&tag) num, err := o.LoadRelated(&tag, "Posts")
User 是 Post 的 ForeignKey,对应的 ReverseMany 关系字段载入
type User struct { Id int Name string Posts []*Post `orm:"reverse(many)"` } user := User{Id: 1} err := dORM.Read(&user) num, err := dORM.LoadRelated(&user, "Posts") for _, post := range user.Posts { //... }
创建一个 QueryM2Mer 对象
o := orm.NewOrm() post := Post{Id: 1} m2m := o.QueryM2M(&post, "Tags") // 第一个参数的对象,主键必须有值 // 第二个参数为对象需要操作的 M2M 字段 // QueryM2Mer 的 api 将作用于 Id 为 1 的 Post
tag := &Tag{Name: "golang"} o.Insert(tag) num, err := m2m.Add(tag) if err == nil { fmt.Println("Added nums: ", num) }
Add 支持多种类型 Tag *Tag []*Tag []Tag []interface{}
var tags []*Tag ... // 读取 tags 以后 ... num, err := m2m.Add(tags) if err == nil { fmt.Println("Added nums: ", num) } // 也可以多个作为参数传入 // m2m.Add(tag1, tag2, tag3)
从M2M关系中删除 tag
Remove 支持多种类型 Tag *Tag []*Tag []Tag []interface{}
var tags []*Tag ... // 读取 tags 以后 ... num, err := m2m.Remove(tags) if err == nil { fmt.Println("Removed nums: ", num) } // 也可以多个作为参数传入 // m2m.Remove(tag1, tag2, tag3)
判断 Tag 是否存在于 M2M 关系中
if m2m.Exist(&Tag{Id: 2}) { fmt.Println("Tag Exist") }
清除所有 M2M 关系
nums, err := m2m.Clear() if err == nil { fmt.Println("Removed Tag Nums: ", nums) }
计算 Tag 的数量
nums, err := m2m.Count() if err == nil { fmt.Println("Total Nums: ", nums) }
摘自:https://beego.me/docs/mvc/model/query.md
标签:read binary crud [] lis term nbsp 情况 存储
原文地址:http://www.cnblogs.com/phpgo/p/7380139.html