标签:data 程序 panel 递归 esc 情况 它的 root 方式
2003 NOIP TG
设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),当中数字1,2,3,…,n为节点编号。每一个节点都有一个分数(均为正整数),记第j个节点的分数为di,tree及它的每一个子树都有一个加分,任一棵子树subtree(也包括tree本身)的加分计算方法例如以下:
subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数
若某个子树为主,规定其加分为1,叶子的加分就是叶节点本身的分数。
不考虑它的空
子树。
试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。
要求输出;
(1)tree的最高加分
(2)tree的前序遍历
如今,请你帮助你的好朋友XZ设计一个程序。求得正确的答案。
第1行:一个整数n(n<=30),为节点个数。
第2行:n个用空格隔开的整数,为每一个节点的分数(分数<=100)
第1行:一个整数。为最高加分(结果不会超过4,000,000,000)。
第2行:n个用空格隔开的整数。为该树的前序遍历。
5
5 7 1 2 10
145
3 1 2 4 5
n(n<=30)
分数<=100
状态转移方程:
f[i,j]=max{f[i,k-1]*f[k+1,j]+a[k]} (i<k<j)。
初始:
f[i,i]=a[i]; f[i,j]=1;
目标:f[1,n]。
在求f[i,j]的同一时候,记下i,…,j的根k,root[i,j]:=k;
这道题有非常多细节要注意,先上代码再解释
for (int i=0;i<=n;i++) { for (int j=0;j<=n;j++) { f[i][j]=1; } } for (int i=1;i<=n;i++) { scanf("%d",&a[i]); f[i][i]=a[i]; root[i][i]=i; }
f[i][j]=0; for (int k=i;k<=j;k++) { if (f[i][j]<f[i][k-1]*f[k+1][j]+f[k][k]) { f[i][j]=f[i][k-1]*f[k+1][j]+f[k][k]; root[i][j]=k; } }
for (int k=i;k<j;k++)
由于这时的状态是f[i][j-1]*f[j+1][j]+f[j][j]
这样就保证了根节点记录的准确。
假设加分恰好是1,root中就不会记录正确的根结点了。
为什么每一个节点的根要初始化为自身呢?来看这一段:
void find(int i,int j) { if (i<=j) { printf("%d ",root[i][j]); find(i,root[i][j]-1); find(root[i][j]+1,j); } }
又为什么须要加上if(i<=j)呢?假设不加的话。当我们递归到i==j的情况下, 下一层是root[i][i-1] 显然不能成立。因此应该及时返回。
如今。整个程序的代码基本解释完了。不如就放上证明人家区间DP身份灵魂代码吧:
for (int p=1;p<=n-1;p++) { for (int i=1;i<=n-p;i++) { int j=i+p; f[i][j]=0; for (int k=i;k<=j;k++) { if (f[i][j]<f[i][k-1]*f[k+1][j]+f[k][k]) { f[i][j]=f[i][k-1]*f[k+1][j]+f[k][k]; root[i][j]=k; } } } }
好了,这道题就解释到这里。
——裁剪冰绡,轻叠数重,淡著胭脂匀注
【基础练习】【区间DP】codevs1090 加分二叉树题解
标签:data 程序 panel 递归 esc 情况 它的 root 方式
原文地址:http://www.cnblogs.com/liguangsunls/p/7388947.html