码迷,mamicode.com
首页 > 其他好文 > 详细

9-合并石子

时间:2017-08-19 21:19:25      阅读:168      评论:0      收藏:0      [点我收藏+]

标签:set   个数   区间   状态   print   std   整数   转移   pac   

/*                                             石子合并(一)
                  时间限制:1000 ms  |  内存限制:65535 KB
                      难度:3

描述
        有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。

求出总的代价最小值。

输入
    有多组测试数据,输入到文件结束。
    每组测试数据第一行有一个整数n,表示有n堆石子。
    接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
    输出总代价的最小值,占单独的一行
样例输入

    3
    1 2 3
    7
    13 7 8 16 21 4 18

样例输出

    9
    239

*/
//区间dp: 状态转移方程为 dp[i][j] = min(dp[i][k] + dp[k+1][j])(i <= k <j) + sum[j] - sum[i - 1].
//通过枚举每一个区间的可能长度2~n,循环求解min();


#include <iostream>
#include <cstring>
#include <cstdio>
#define MAX 2 << 16
using namespace std;
int dp[205][205], sum[205];
int a[205];

int main(){
    int n;
    while(~scanf("%d", &n)){
//        memset(a, 0, sizeof(a));
        memset(dp, 0, sizeof(dp));
        memset(sum, 0, sizeof(sum));
        for(int i = 1; i <= n; i++){
            scanf("%d", &a[i]);
            sum[i] = sum[i - 1] + a[i]; //为保正i-1不越界故i从1开始取
        }
        for(int r = 2; r <= n; r++){ //枚举所有可能的区间长度
            for(int i = 1; i + r - 1 <= n; i++){
                int j = i + r - 1;   //i确定了,区间长度确定了,j也就确定了
                dp[i][j] = MAX;
                for(int k = i; k <= j - 1; k++)
                    if(dp[i][j] > dp[i][k] + dp[k+1][j] + sum[j] - sum[i - 1])
                        dp[i][j] = dp[i][k] + dp[k+1][j] + sum[j] - sum[i -1];                
            }
        }
        printf("%d\n", dp[1][n]);
    }
    return 0;
}

9-合并石子

标签:set   个数   区间   状态   print   std   整数   转移   pac   

原文地址:http://www.cnblogs.com/zhumengdexiaobai/p/7397776.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!