码迷,mamicode.com
首页 > 其他好文 > 详细

51nod 1103 N的倍数 思路:抽屉原理+前缀和

时间:2017-08-23 10:15:22      阅读:128      评论:0      收藏:0      [点我收藏+]

标签:es2017   write   long   ges   结果   png   数字   image   end   

题目:

技术分享

这是一道很神奇的题目,做法非常巧妙。巧妙在题目要求n个数字,而且正好要求和为n的倍数。

 

思路:用sum[i]表示前i个数字的和%n。得到sum[ 1-N ]共N个数字。

   N个数字对N取模,每个数字都在0-( N-1 )之间。

   可能出现两种情况  1:有一个数字等于0。(都不相等)   2:至少有两个数字相等。

 

 

 

1.如果sum数组中有一个数字sum[i]=0,说明前i个数字的和为N的倍数。

2.如果sum[i]==sum[j],说明第i-( j-1 )或者( i+1 )-j的和为N的倍数。

 

只有1、2两种情况,不用考虑无解的情况。

 

#include <bits\stdc++.h>
using namespace std;

int a[50005];
int visit[50005];  //visit[sum%n] != 0 说明有一个前缀和相等的,visit[sum%n]即为索引。 
int main(){
    int n; 
    cin >> n;
    for(int i = 1;i <= n; i++){
        cin >> a[i];
    }
    
    long long sum = 0;  //前缀和 
    for(int i = 1;i <= n; i++){
        sum = (sum + a[i])%n;   //前缀和%n 
        if(sum != 0 && visit[sum] == 0){  
            visit[sum] = i;    // 不等于0并且没有出现过,存在visit中 
        }else{
            //等于0或者有相等的,开始输出结果,并结束程序 
            cout << i-visit[sum] << endl;
            for(int j = visit[sum]+1 ;j <= i; j++){
//                cout <<"j:"<<j<<" "<< a[j] << " ";
                    cout << a[j] << endl;
            }
            break;
        }
    }
    return 0;
} 
//writed by zhangjiuding

 

51nod 1103 N的倍数 思路:抽屉原理+前缀和

标签:es2017   write   long   ges   结果   png   数字   image   end   

原文地址:http://www.cnblogs.com/zhangjiuding/p/7414410.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!