码迷,mamicode.com
首页 > 其他好文 > 详细

目标函数、损失函数、代价函数

时间:2017-08-23 20:43:47      阅读:2033      评论:0      收藏:0      [点我收藏+]

标签:die   limits   高度   mat   move   种类型   授权   tle   display   

http://www.cnblogs.com/Belter/p/6653773.html

注:代价函数(有的地方也叫损失函数,Loss Function)在机器学习中的每一种算法中都很重要,因为训练模型的过程就是优化代价函数的过程,代价函数对每个参数的偏导数就是梯度下降中提到的梯度,防止过拟合时添加的正则化项也是加在代价函数后面的。在学习相关算法的过程中,对代价函数的理解也在不断的加深,在此做一个小结。

 

1. 什么是代价函数?


假设有训练样本(x, y),模型为h,参数为θ。h(θ) = θTx(θT表示θ的转置)。

(1)概况来讲,任何能够衡量模型预测出来的值h(θ)与真实值y之间的差异的函数都可以叫做代价函数C(θ),如果有多个样本,则可以将所有代价函数的取值求均值,记做J(θ)。因此很容易就可以得出以下关于代价函数的性质:

  • 对于每种算法来说,代价函数不是唯一的;
  • 代价函数是参数θ的函数;
  • 总的代价函数J(θ)可以用来评价模型的好坏,代价函数越小说明模型和参数越符合训练样本(x, y);
  • J(θ)是一个标量;

(2)当我们确定了模型h,后面做的所有事情就是训练模型的参数θ。那么什么时候模型的训练才能结束呢?这时候也涉及到代价函数,由于代价函数是用来衡量模型好坏的,我们的目标当然是得到最好的模型(也就是最符合训练样本(x, y)的模型)。因此训练参数的过程就是不断改变θ,从而得到更小的J(θ)的过程。理想情况下,当我们取到代价函数J的最小值时,就得到了最优的参数θ,记为:

 

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享minθJ(θ)

 

例如,J(θ) = 0,表示我们的模型完美的拟合了观察的数据,没有任何误差。

(3)在优化参数θ的过程中,最常用的方法是梯度下降,这里的梯度就是代价函数J(θ)对θ1, θ2, ..., θn的偏导数。由于需要求偏导,我们可以得到另一个关于代价函数的性质:

  • 选择代价函数时,最好挑选对参数θ可微的函数(全微分存在,偏导数一定存在)

 

2. 代价函数的常见形式


经过上面的描述,一个好的代价函数需要满足两个最基本的要求:能够评价模型的准确性,对参数θ可微。 

 

2.1 均方误差

在线性回归中,最常用的是均方误差(Mean squared error),具体形式为:

 

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享J(θ0,θ1)=12m∑i=1m(y^(i)?y(i))2=12m∑i=1m(hθ(x(i))?y(i))2

 

m:训练样本的个数;

hθ(x):用参数θ和x预测出来的y值;

y:原训练样本中的y值,也就是标准答案

上角标(i):第i个样本

 

2.2 交叉熵

在逻辑回归中,最常用的是代价函数是交叉熵(Cross Entropy),交叉熵是一个常见的代价函数,在神经网络中也会用到。下面是《神经网络与深度学习》一书对交叉熵的解释:

交叉熵是对「出乎意料」(译者注:原文使用suprise)的度量。神经元的目标是去计算函数y, 且y=y(x)。但是我们让它取而代之计算函数a, 且a=a(x)。假设我们把a当作y等于1的概率,1?a是y等于0的概率。那么,交叉熵衡量的是我们在知道y的真实值时的平均「出乎意料」程度。当输出是我们期望的值,我们的「出乎意料」程度比较低;当输出不是我们期望的,我们的「出乎意料」程度就比较高。

 

在1948年,克劳德·艾尔伍德·香农将热力学的熵,引入到信息论,因此它又被称为香农熵(Shannon Entropy),它是香农信息量(Shannon Information Content, SIC)的期望。香农信息量用来度量不确定性的大小:一个事件的香农信息量等于0,表示该事件的发生不会给我们提供任何新的信息,例如确定性的事件,发生的概率是1,发生了也不会引起任何惊讶;当不可能事件发生时,香农信息量为无穷大,这表示给我们提供了无穷多的新信息,并且使我们无限的惊讶。更多解释可以看这里

 

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享J(θ)=?1m[∑i=1m(y(i)log?hθ(x(i))+(1?y(i))log?(1?hθ(x(i)))]

 

符号说明同上 

 

2.3 神经网络中的代价函数

学习过神经网络后,发现逻辑回归其实是神经网络的一种特例(没有隐藏层的神经网络)。因此神经网络中的代价函数与逻辑回归中的代价函数非常相似:

 

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享J(θ)=?1m[∑i=1m∑k=1K(yk(i)log?hθ(x(i))+(1?yk(i))log?(1?(hθ(x(i)))k)]

 

这里之所以多了一层求和项,是因为神经网络的输出一般都不是单一的值,K表示在多分类中的类型数。

例如在数字识别中,K=10,表示分了10类。此时对于某一个样本来说,输出的结果如下:

技术分享
  1.1266e-004
  1.7413e-003
  2.5270e-003
  1.8403e-005
  9.3626e-003
  3.9927e-003
  5.5152e-003
  4.0147e-004
  6.4807e-003
  9.9573e-001
技术分享

一个10维的列向量,预测的结果表示输入的数字是0~9中的某一个的概率,概率最大的就被当做是预测结果。例如上面的预测结果是9。理想情况下的预测结果应该如下(9的概率是1,其他都是0):

技术分享
   0
   0
   0
   0
   0
   0
   0
   0
   0
   1
技术分享

比较预测结果和理想情况下的结果,可以看到这两个向量的对应元素之间都存在差异,共有10组,这里的10就表示代价函数里的K,相当于把每一种类型的差异都累加起来了。

 

3. 代价函数与参数


代价函数衡量的是模型预测值h(θ) 与标准答案y之间的差异,所以总的代价函数J是h(θ)和y的函数,即J=f(h(θ), y)。又因为y都是训练样本中给定的,h(θ)由θ决定,所以,最终还是模型参数θ的改变导致了J的改变。对于不同的θ,对应不同的预测值h(θ),也就对应着不同的代价函数J的取值。变化过程为:

 

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享θ??>h(θ)??>J(θ)

 

θ引起了h(θ)的改变,进而改变了J(θ)的取值。为了更直观的看到参数对代价函数的影响,举个简单的例子:

有训练样本{(0, 0), (1, 1), (2, 2), (4, 4)},即4对训练样本,每个样本对中第1个数表示x的值,第2个数表示y的值。这几个点很明显都是y=x这条直线上的点。如下图:

技术分享

                                                                                                             图1:不同参数可以拟合出不同的直线

技术分享 View Code

常数项为0,所以可以取θ0=0,然后取不同的θ1,可以得到不同的拟合直线。当θ1=0时,拟合的直线是y=0,即蓝色线段,此时距离样本点最远,代价函数的值(误差)也最大;当θ1=1时,拟合的直线是y=x,即绿色线段,此时拟合的直线经过每一个样本点,代价函数的值为0。

通过下图可以查看随着θ1的变化,J(θ)的变化情况:

技术分享

                                                                                                        图2:代价函数J(θ)随参数的变化而变化

技术分享 View Code

从图中可以很直观的看到θ对代价函数的影响,当θ1=1时,代价函数J(θ)取到最小值。因为线性回归模型的代价函数(均方误差)的性质非常好,因此也可以直接使用代数的方法,求J(θ)的一阶导数为0的点,就可以直接求出最优的θ值(正规方程法)。

 

4. 代价函数与梯度


 梯度下降中的梯度指的是代价函数对各个参数的偏导数,偏导数的方向决定了在学习过程中参数下降的方向,学习率(通常用α表示)决定了每步变化的步长,有了导数和学习率就可以使用梯度下降算法(Gradient Descent Algorithm)更新参数了。下图中展示了只有两个参数的模型运用梯度下降算法的过程。

 技术分享

 

 

下图可以看做是代价函数J(θ)与参数θ做出的图,曲面上的一个点(θ0, θ1, J(θ)),有无数条切线,在这些切线中与x-y平面(底面,相当于θ0, θ1)夹角最大的那条切线就是该点梯度的方向,沿该方向移动,会产生最大的高度变化(相对于z轴,这里的z轴相当于代价函数J(θ))。

技术分享

 

4.1 线性回归模型的代价函数对参数的偏导数

 技术分享

 还是以两个参数为例,每个参数都有一个偏导数,且综合了所有样本的信息。

 

4.2 逻辑回归模型的代价函数对参数的偏导数

根据逻辑回归模型的代价函数以及sigmoid函数

 

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享hθ(x)=g(θTx)

 

 

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享g(z)=11+e?z

 

得到对每个参数的偏导数为

 

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享??θjJ(θ)=∑i=1m(hθ(xi)?yi)xji

 

 详细推导过程可以看这里-逻辑回归代价函数的导数

作者:zzanswer
链接:https://www.zhihu.com/question/52398145/answer/209358209
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

首先给出结论:损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念,对于目标函数来说在有约束条件下的最小化就是损失函数(loss function)。

举个例子解释一下:(图片来自Andrew Ng Machine Learning公开课视频)

 

技术分享

上面三个图的函数依次为 技术分享 , 技术分享 , 技术分享 。我们是想用这三个函数分别来拟合Price,Price的真实值记为 技术分享

我们给定 技术分享 ,这三个函数都会输出一个 技术分享 ,这个输出的 技术分享 与真实值 技术分享 可能是相同的,也可能是不同的,为了表示我们拟合的好坏,我们就用一个函数来度量拟合的程度,比如:

技术分享 ,这个函数就称为损失函数(loss function),或者叫代价函数(cost function)。损失函数越小,就代表模型拟合的越好

那是不是我们的目标就只是让loss function越小越好呢?还不是。

这个时候还有一个概念叫风险函数(risk function)。风险函数是损失函数的期望,这是由于我们输入输出的 技术分享 遵循一个联合分布,但是这个联合分布是未知的,所以无法计算。但是我们是有历史数据的,就是我们的训练集, 技术分享 关于训练集的平均损失称作经验风险(empirical risk),即 技术分享 ,所以我们的目标就是最小化 技术分享 ,称为经验风险最小化

到这里完了吗?还没有。

如果到这一步就完了的话,那我们看上面的图,那肯定是最右面的 技术分享 的经验风险函数最小了,因为它对历史的数据拟合的最好嘛。但是我们从图上来看 技术分享肯定不是最好的,因为它过度学习历史数据,导致它在真正预测时效果会很不好,这种情况称为过拟合(over-fitting)。

为什么会造成这种结果?大白话说就是它的函数太复杂了,都有四次方了,这就引出了下面的概念,我们不仅要让经验风险最小化,还要让结构风险最小化。这个时候就定义了一个函数 技术分享 ,这个函数专门用来度量模型的复杂度,在机器学习中也叫正则化(regularization)。常用的有 技术分享 , 技术分享 范数。

到这一步我们就可以说我们最终的优化函数是:技术分享 ,即最优化经验风险和结构风险,而这个函数就被称为目标函数

结合上面的例子来分析:最左面的 技术分享 结构风险最小(模型结构最简单),但是经验风险最大(对历史数据拟合的最差);最右面的 技术分享 经验风险最小(对历史数据拟合的最好),但是结构风险最大(模型结构最复杂);而 技术分享 达到了二者的良好平衡,最适合用来预测未知数据集。

目标函数、损失函数、代价函数

标签:die   limits   高度   mat   move   种类型   授权   tle   display   

原文地址:http://www.cnblogs.com/JZ-Ser/p/7419957.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!