标签:cer sub color with ram body use targe null
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Given S = "rabbbit"
, T = "rabbit"
, return 3
.
Do it in O(n2) time and O(n) memory.
O(n2) memory is also acceptable if you do not know how to optimize memory.
Solution 1. Recursion
For s[0 ~ n - 1] and t[0 ~ m - 1], there are 2 cases.
case 1. s.charAt(n - 1) != t.charAt(m - 1)
This means s.charAt(n - 1) can‘t be used in subsequence of t, so f(s[0 ~ n - 1], t[0 ~ m - 1]) = f(s[0 ~ n - 2], t[0 ~ m - 1]).
case 2. s.charAt(n - 1) == t.charAt(m - 1)
This means s.charAt(n - 1) can be either used or not used in subsequence of t.
If it is used, there are f(s[0 ~ n - 2], t[0 ~ m - 2]) distinct subsequences of t in s.
If it is not used, there are f(s[0 ~ n - 2], t[0 ~ m - 1]) distinct subsequences of t in s.
so f(s[0 ~ n - 1], t[0 ~ m - 1]) = f(s[0 ~ n - 2], t[0 ~ m - 2]) + f(s[0 ~ n - 2], t[0 ~ m - 1]).
Base case 1. if t is an empty string, then there is 1 distinct subseqnce of empty string in s.
Base case 2. if t is longer than s, there is no subsequences of t in s.
It‘s clear by drawing recursive tree, that this solution has overlapping problems.
1 public class DistinctSubsequence { 2 public int getNumOfDistinctSubsequenceRecursion(String s, String t) { 3 if(s == null || t == null) { 4 return 0; 5 } 6 return recursiveHelper(s, s.length() - 1, t, t.length() - 1); 7 } 8 private int recursiveHelper(String s, int endIdx1, String t, int endIdx2) { 9 if(endIdx2 < 0) { 10 return 1; 11 } 12 if(endIdx1 < endIdx2) { 13 return 0; 14 } 15 if(s.charAt(endIdx1) != t.charAt(endIdx2)) { 16 return recursiveHelper(s, endIdx1 - 1, t, endIdx2); 17 } 18 return recursiveHelper(s, endIdx1 - 1, t, endIdx2 - 1) + recursiveHelper(s, endIdx1 - 1, t, endIdx2); 19 } 20 public static void main(String[] args) { 21 String s1 = "rabbbit", t1 = "rabbit"; 22 String s2 = "aabbccdd", t2 = "abcd"; 23 String s3 = "rabbbitt", t3 = "rabbit"; 24 String s4 = "", t4 = ""; 25 String s5 = "lin", t5 = "lin"; 26 String s6 = "lin", t6 = "ling"; 27 DistinctSubsequence test = new DistinctSubsequence(); 28 System.out.println(test.getNumOfDistinctSubsequenceRecursion(s1, t1)); 29 System.out.println(test.getNumOfDistinctSubsequenceRecursion(s2, t2)); 30 System.out.println(test.getNumOfDistinctSubsequenceRecursion(s3, t3)); 31 System.out.println(test.getNumOfDistinctSubsequenceRecursion(s4, t4)); 32 System.out.println(test.getNumOfDistinctSubsequenceRecursion(s5, t5)); 33 System.out.println(test.getNumOfDistinctSubsequenceRecursion(s6, t6)); 34 } 35 }
Solution 2. Dynamic Programming
State: dp[i][j]: the number of distinct subsequence of T[0... j - 1] in S[0... i - 1]
Function:
If S.charAt(i - 1) can be used to match the last character of T[0...j - 1], we can either choose to use it or not use it.
If S.charAt(i - 1) can‘t be used to match the last character of T[0...j - 1], we can only choose not to use it.
The above gives us the following state function.
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j], if S.charAt(i - 1) == T.charAt(j - 1);
dp[i][j] = dp[i - 1][j], if S.charAt(i - 1) != T.charAt(j - 1);
Initialization: dp[0][j] = 0, for j from 1 to T.length(); S is empty string and T is not empty string, no subsequence of T in S;
dp[i][0] = 1, for i from 0 to S.length(); T is empty string, there is always 1 subsequence of T in S, regardless if S is empty or not.
Answer: dp[S.length()][T.length()]
1 public class Solution { 2 public int numDistinct(String S, String T) { 3 if(S == null || T == null){ 4 return 0; 5 } 6 int n = S.length(); 7 int m = T.length(); 8 int[][] dp = new int[n + 1][m + 1]; 9 for(int j = 0; j <= m; j++){ 10 dp[0][j] = 0; 11 } 12 for(int i = 0; i <= n; i++){ 13 dp[i][0] = 1; 14 } 15 for(int j = 1; j <= m; j++){ 16 for(int i = j; i <= n; i++){ 17 if(S.charAt(i - 1) == T.charAt(j - 1)){ 18 dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 19 } 20 else{ 21 dp[i][j] = dp[i - 1][j]; 22 } 23 } 24 } 25 return dp[n][m]; 26 } 27 }
Related Problems
[LintCode] Distinct Subsequence
标签:cer sub color with ram body use targe null
原文地址:http://www.cnblogs.com/lz87/p/7416795.html