码迷,mamicode.com
首页 > 其他好文 > 详细

synchronized VS Lock, wait-notify VS Condition

时间:2017-08-26 14:25:54      阅读:216      评论:0      收藏:0      [点我收藏+]

标签:ssh   rail   技术   clu   成员   有一个   ldo   lock   exit   

最近在看Java Threads第三版,收获颇多。全英文阅读,感觉真的是爽歪歪。推荐大家都看看。

这一篇想系统的讲一讲,线程之间通信的2种模式,wait-notify 和 Condition。

先上一个生产者和消费者的例子

 

package waitnotify;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;

public class Data {

    private List<Integer> data = new ArrayList<Integer>(5);
    
    private Random random = new Random();
    
    public void put() {
        synchronized (data) {
            if (data.size() >= 5) {
                try {
                    data.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            } else {
                data.add(random.nextInt(100));
                data.notify();
            }
        }
    }
    
    public void get() {
        synchronized (data) {
            if (data.size() < 1) {
                try {
                    data.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            } else {
                data.remove(0);
                data.notify();
            }
        }
    }
}

 

package waitnotify;

public class Producer extends Thread{

    private Data data;
    
    public Producer(Data data, String name) {
        this.data = data;
        this.setName(name);
    }
    
    @Override
    public void run() {
        for (int i=0; i<3; i++) {
            data.put();
        }
    }
}
package waitnotify;

public class Consumer extends Thread {

    private Data data;
    
    public Consumer(Data data, String name) {
        this.data = data;
        this.setName(name);
    }
    
    @Override
    public void run() {
        for (int i=0; i<3; i++) {
            data.get();
        }
    }
}
package waitnotify;

public class Test {

    public static void main (String args[]) {
        Data data = new Data();
        new Producer(data, "put---1").start();
        new Consumer(data, "get---1").start();
        new Consumer(data, "get---2").start();
        new Producer(data, "put---2").start();
    }
}

这个例子简单、易懂、易读。首先基于synchronized锁定共享资源(data),然后生产者和消费者通过wait和notify相互通信,实现互斥的访问共享资源。这里的关键是互斥,只要用了synchronized,所有的线程都只能互斥的执行。

1、那我们思考一个有关数据库的问题,写操作和读操作、写操作和写操作都是需要互斥的,读操作和读操作需要互斥吗?不需要,因为两个读操作同时进行,不会产生脏数据。这种情况,synchronized就无从下手。

2、还有,当多个线程访问synchronized代码,只有一个线程在执行,其它的线程只能死等。这里也是可以增加一些灵活性的,比如说,其它的线程可以等到一定时间后,中断自己,去干别的事情。

3、notify的作用是唤醒除了自己以外的其它线程,至于是哪一个,它不管。试想一个场景,有多个生产者线程和消费者线程。如果一个生产者线程发现data被装满,自己就等待,然后唤醒一个线程,那唤醒的那个线程是生产者线程,还是消费者线程呢?如果又唤醒了一个生产者线程,它还是等待,虽然不会产生脏数据,但是浪费了性能和时间啊。此处也可以优化。

下面就一起看看,如何解决上面的问题。

先来看看Lock这个接口,定义了哪些行为

 

public interface Lock {

    void lock();

    void lockInterruptibly() throws InterruptedException;

    boolean tryLock();

    boolean tryLock(long time, TimeUnit unit) throws InterruptedException;

    void unlock();

    Condition newCondition();
}

 

其中2个抛出中断异常的方法可以解决第二个问题;newCondition方法生成多个Condition可以解决第三个问题;而另一个锁接口ReadWriteLock解决了第一个问题,实现类里面用到了共享锁。 

再来一个Condition版本的生产者和消费者(主要是修改了Data类)

 

package condition;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class Data {

    private List<Integer> data = new ArrayList<Integer>(5);
    
    private Random random = new Random();
    
    Lock lock = new ReentrantLock();
    Condition full = lock.newCondition();
    Condition empty = lock.newCondition();
    
    public void put() {
        lock.lock();
        try {
            if (data.size() >= 5) {
                full.await();
            } else {
                data.add(random.nextInt(100));
                empty.signal();
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
    
    public void get() {
        lock.lock();
        try {
            if (data.size() < 1) {
                empty.await();
            } else {
                data.remove(0);
                full.signal();
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
}

 

这里用一个lock生成了2个Condition,然后分别进行await和signal。假设一个生产者线程发现data装满,然后full.await,然后之前的empty.signal会唤醒一个线程,此线程必定是消费者线程。其实讲到这里,读者应该能猜到,full和empty分别维护了各自的等待队列,full的队列里全是生产者线程,empty队列里全是消费者线程。另外发现,代码似乎变复杂了,必须在finally里面释放锁。因为synchronized是JVM实现的锁语义,JVM会自动的帮你释放锁。而Lock是Java代码层面的语义,如果有异常,需要自己释放。

讲了半天,好像只是描述了一个表面现象,而没有接触到实质。没办法,源码走起。

从最重要的一个类ReentrantLock的实现看起,发现几乎所有的操作,兜兜转转都是调用了另一个核心类AbstractQueuedSynchronizer。这个类是Java并发大师的杰作,是Lock机制的灵魂所在,我至今还有些地方没能够完全领悟。哎,大师就是大师。

当然,大师也是站在巨人的肩膀上。AbstractQueuedSynchronizer的核心思想是CLH队列,说白了,就是将同一个锁上等待的所有线程看成一个个节点,每一个节点都在自旋,等待前驱节点的信号并且尝试获取锁。而且,AbstractQueuedSynchronizer将同一个Condition上等待的所有线程也封装成了节点队列。

那就先看看这个节点是个什么数据结构

 

static final class Node {
        /** Marker to indicate a node is waiting in shared mode */
        static final Node SHARED = new Node();
        /** Marker to indicate a node is waiting in exclusive mode */
        static final Node EXCLUSIVE = null;

        /** waitStatus value to indicate thread has cancelled */
        static final int CANCELLED =  1;
        /** waitStatus value to indicate successor‘s thread needs unparking */
        static final int SIGNAL    = -1;
        /** waitStatus value to indicate thread is waiting on condition */
        static final int CONDITION = -2;
        /**
         * waitStatus value to indicate the next acquireShared should
         * unconditionally propagate
         */
        static final int PROPAGATE = -3;

        /**
         * Status field, taking on only the values:
         *   SIGNAL:     The successor of this node is (or will soon be)
         *               blocked (via park), so the current node must
         *               unpark its successor when it releases or
         *               cancels. To avoid races, acquire methods must
         *               first indicate they need a signal,
         *               then retry the atomic acquire, and then,
         *               on failure, block.
         *   CANCELLED:  This node is cancelled due to timeout or interrupt.
         *               Nodes never leave this state. In particular,
         *               a thread with cancelled node never again blocks.
         *   CONDITION:  This node is currently on a condition queue.
         *               It will not be used as a sync queue node
         *               until transferred, at which time the status
         *               will be set to 0. (Use of this value here has
         *               nothing to do with the other uses of the
         *               field, but simplifies mechanics.)
         *   PROPAGATE:  A releaseShared should be propagated to other
         *               nodes. This is set (for head node only) in
         *               doReleaseShared to ensure propagation
         *               continues, even if other operations have
         *               since intervened.
         *   0:          None of the above
         *
         * The values are arranged numerically to simplify use.
         * Non-negative values mean that a node doesn‘t need to
         * signal. So, most code doesn‘t need to check for particular
         * values, just for sign.
         *
         * The field is initialized to 0 for normal sync nodes, and
         * CONDITION for condition nodes.  It is modified using CAS
         * (or when possible, unconditional volatile writes).
         */
        volatile int waitStatus;

        /**
         * Link to predecessor node that current node/thread relies on
         * for checking waitStatus. Assigned during enqueuing, and nulled
         * out (for sake of GC) only upon dequeuing.  Also, upon
         * cancellation of a predecessor, we short-circuit while
         * finding a non-cancelled one, which will always exist
         * because the head node is never cancelled: A node becomes
         * head only as a result of successful acquire. A
         * cancelled thread never succeeds in acquiring, and a thread only
         * cancels itself, not any other node.
         */
        volatile Node prev;

        /**
         * Link to the successor node that the current node/thread
         * unparks upon release. Assigned during enqueuing, adjusted
         * when bypassing cancelled predecessors, and nulled out (for
         * sake of GC) when dequeued.  The enq operation does not
         * assign next field of a predecessor until after attachment,
         * so seeing a null next field does not necessarily mean that
         * node is at end of queue. However, if a next field appears
         * to be null, we can scan prev‘s from the tail to
         * double-check.  The next field of cancelled nodes is set to
         * point to the node itself instead of null, to make life
         * easier for isOnSyncQueue.
         */
        volatile Node next;

        /**
         * The thread that enqueued this node.  Initialized on
         * construction and nulled out after use.
         */
        volatile Thread thread;

        /**
         * Link to next node waiting on condition, or the special
         * value SHARED.  Because condition queues are accessed only
         * when holding in exclusive mode, we just need a simple
         * linked queue to hold nodes while they are waiting on
         * conditions. They are then transferred to the queue to
         * re-acquire. And because conditions can only be exclusive,
         * we save a field by using special value to indicate shared
         * mode.
         */
        Node nextWaiter;

        /**
         * Returns true if node is waiting in shared mode.
         */
        final boolean isShared() {
            return nextWaiter == SHARED;
        }

        /**
         * Returns previous node, or throws NullPointerException if null.
         * Use when predecessor cannot be null.  The null check could
         * be elided, but is present to help the VM.
         *
         * @return the predecessor of this node
         */
        final Node predecessor() throws NullPointerException {
            Node p = prev;
            if (p == null)
                throw new NullPointerException();
            else
                return p;
        }

        Node() {    // Used to establish initial head or SHARED marker
        }

        Node(Thread thread, Node mode) {     // Used by addWaiter
            this.nextWaiter = mode;
            this.thread = thread;
        }

        Node(Thread thread, int waitStatus) { // Used by Condition
            this.waitStatus = waitStatus;
            this.thread = thread;
        }
    }

 

这个Node是AbstractQueuedSynchronizer的一个内部类,大部分的英文注释说的很明白了。Node就是对线程的包装,Node有两种模式,独占(EXCLUSIVE)和共享(SHARED),前面提到的读-读操作就是利用了共享锁。对于一个节点的等待状态,CANCELLED表示当前节点被取消,比如说线程中断导致的;SIGNAL表示后继节点可以执行;CONDITION表示此节点在等待一个Condition,在Condition等待队列里面。

再看看Condition等待队列的结构

 

技术分享
public class ConditionObject implements Condition, java.io.Serializable {
        private static final long serialVersionUID = 1173984872572414699L;
        /** First node of condition queue. */
        private transient Node firstWaiter;
        /** Last node of condition queue. */
        private transient Node lastWaiter;

        /**
         * Creates a new {@code ConditionObject} instance.
         */
        public ConditionObject() { }

        // Internal methods

        /**
         * Adds a new waiter to wait queue.
         * @return its new wait node
         */
        private Node addConditionWaiter() {
            Node t = lastWaiter;
            // If lastWaiter is cancelled, clean out.
            if (t != null && t.waitStatus != Node.CONDITION) {
                unlinkCancelledWaiters();
                t = lastWaiter;
            }
            Node node = new Node(Thread.currentThread(), Node.CONDITION);
            if (t == null)
                firstWaiter = node;
            else
                t.nextWaiter = node;
            lastWaiter = node;
            return node;
        }

        /**
         * Removes and transfers nodes until hit non-cancelled one or
         * null. Split out from signal in part to encourage compilers
         * to inline the case of no waiters.
         * @param first (non-null) the first node on condition queue
         */
        private void doSignal(Node first) {
            do {
                if ( (firstWaiter = first.nextWaiter) == null)
                    lastWaiter = null;
                first.nextWaiter = null;
            } while (!transferForSignal(first) &&
                     (first = firstWaiter) != null);
        }

        /**
         * Removes and transfers all nodes.
         * @param first (non-null) the first node on condition queue
         */
        private void doSignalAll(Node first) {
            lastWaiter = firstWaiter = null;
            do {
                Node next = first.nextWaiter;
                first.nextWaiter = null;
                transferForSignal(first);
                first = next;
            } while (first != null);
        }

        /**
         * Unlinks cancelled waiter nodes from condition queue.
         * Called only while holding lock. This is called when
         * cancellation occurred during condition wait, and upon
         * insertion of a new waiter when lastWaiter is seen to have
         * been cancelled. This method is needed to avoid garbage
         * retention in the absence of signals. So even though it may
         * require a full traversal, it comes into play only when
         * timeouts or cancellations occur in the absence of
         * signals. It traverses all nodes rather than stopping at a
         * particular target to unlink all pointers to garbage nodes
         * without requiring many re-traversals during cancellation
         * storms.
         */
        private void unlinkCancelledWaiters() {
            Node t = firstWaiter;
            Node trail = null;
            while (t != null) {
                Node next = t.nextWaiter;
                if (t.waitStatus != Node.CONDITION) {
                    t.nextWaiter = null;
                    if (trail == null)
                        firstWaiter = next;
                    else
                        trail.nextWaiter = next;
                    if (next == null)
                        lastWaiter = trail;
                }
                else
                    trail = t;
                t = next;
            }
        }

        // public methods

        /**
         * Moves the longest-waiting thread, if one exists, from the
         * wait queue for this condition to the wait queue for the
         * owning lock.
         *
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        public final void signal() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignal(first);
        }

        /**
         * Moves all threads from the wait queue for this condition to
         * the wait queue for the owning lock.
         *
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        public final void signalAll() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignalAll(first);
        }

        /**
         * Implements uninterruptible condition wait.
         * <ol>
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         *      throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled.
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * </ol>
         */
        public final void awaitUninterruptibly() {
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            boolean interrupted = false;
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if (Thread.interrupted())
                    interrupted = true;
            }
            if (acquireQueued(node, savedState) || interrupted)
                selfInterrupt();
        }

        /*
         * For interruptible waits, we need to track whether to throw
         * InterruptedException, if interrupted while blocked on
         * condition, versus reinterrupt current thread, if
         * interrupted while blocked waiting to re-acquire.
         */

        /** Mode meaning to reinterrupt on exit from wait */
        private static final int REINTERRUPT =  1;
        /** Mode meaning to throw InterruptedException on exit from wait */
        private static final int THROW_IE    = -1;

        /**
         * Checks for interrupt, returning THROW_IE if interrupted
         * before signalled, REINTERRUPT if after signalled, or
         * 0 if not interrupted.
         */
        private int checkInterruptWhileWaiting(Node node) {
            return Thread.interrupted() ?
                (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
                0;
        }

        /**
         * Throws InterruptedException, reinterrupts current thread, or
         * does nothing, depending on mode.
         */
        private void reportInterruptAfterWait(int interruptMode)
            throws InterruptedException {
            if (interruptMode == THROW_IE)
                throw new InterruptedException();
            else if (interruptMode == REINTERRUPT)
                selfInterrupt();
        }

        /**
         * Implements interruptible condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         *      throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled or interrupted.
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * </ol>
         */
        public final void await() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }

        /**
         * Implements timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         *      throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled, interrupted, or timed out.
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * </ol>
         */
        public final long awaitNanos(long nanosTimeout)
                throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return deadline - System.nanoTime();
        }

        /**
         * Implements absolute timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         *      throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled, interrupted, or timed out.
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * <li> If timed out while blocked in step 4, return false, else true.
         * </ol>
         */
        public final boolean awaitUntil(Date deadline)
                throws InterruptedException {
            long abstime = deadline.getTime();
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (System.currentTimeMillis() > abstime) {
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                LockSupport.parkUntil(this, abstime);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }

        /**
         * Implements timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         *      throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled, interrupted, or timed out.
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * <li> If timed out while blocked in step 4, return false, else true.
         * </ol>
         */
        public final boolean await(long time, TimeUnit unit)
                throws InterruptedException {
            long nanosTimeout = unit.toNanos(time);
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                if (nanosTimeout <= 0L) {
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }

        //  support for instrumentation

        /**
         * Returns true if this condition was created by the given
         * synchronization object.
         *
         * @return {@code true} if owned
         */
        final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
            return sync == AbstractQueuedSynchronizer.this;
        }

        /**
         * Queries whether any threads are waiting on this condition.
         * Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}.
         *
         * @return {@code true} if there are any waiting threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        protected final boolean hasWaiters() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION)
                    return true;
            }
            return false;
        }

        /**
         * Returns an estimate of the number of threads waiting on
         * this condition.
         * Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}.
         *
         * @return the estimated number of waiting threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        protected final int getWaitQueueLength() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            int n = 0;
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION)
                    ++n;
            }
            return n;
        }

        /**
         * Returns a collection containing those threads that may be
         * waiting on this Condition.
         * Implements {@link AbstractQueuedSynchronizer#getWaitingThreads(ConditionObject)}.
         *
         * @return the collection of threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        protected final Collection<Thread> getWaitingThreads() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            ArrayList<Thread> list = new ArrayList<Thread>();
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
                if (w.waitStatus == Node.CONDITION) {
                    Thread t = w.thread;
                    if (t != null)
                        list.add(t);
                }
            }
            return list;
        }
    }
ConditionObject

 

ConditionObject也是AbstractQueuedSynchronizer的一个内部类,主要是处理线程通信的一个数据结构,里面维护一个等待被唤醒的线程的节点队列。

AbstractQueuedSynchronizer的成员变量,和几个CAS操作

    /**
     * Head of the wait queue, lazily initialized.  Except for
     * initialization, it is modified only via method setHead.  Note:
     * If head exists, its waitStatus is guaranteed not to be
     * CANCELLED.
     */
    private transient volatile Node head;

    /**
     * Tail of the wait queue, lazily initialized.  Modified only via
     * method enq to add new wait node.
     */
    private transient volatile Node tail;

    /**
     * The synchronization state.
     */
    private volatile int state;



-----------------------------CAS操作----------------------------------------------
    /**
     * Setup to support compareAndSet. We need to natively implement
     * this here: For the sake of permitting future enhancements, we
     * cannot explicitly subclass AtomicInteger, which would be
     * efficient and useful otherwise. So, as the lesser of evils, we
     * natively implement using hotspot intrinsics API. And while we
     * are at it, we do the same for other CASable fields (which could
     * otherwise be done with atomic field updaters).
     */
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long stateOffset;
    private static final long headOffset;
    private static final long tailOffset;
    private static final long waitStatusOffset;
    private static final long nextOffset;

    static {
        try {
            stateOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
            headOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("head"));
            tailOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
            waitStatusOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("waitStatus"));
            nextOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("next"));

        } catch (Exception ex) { throw new Error(ex); }
    }

    /**
     * CAS head field. Used only by enq.
     */
    private final boolean compareAndSetHead(Node update) {
        return unsafe.compareAndSwapObject(this, headOffset, null, update);
    }

    /**
     * CAS tail field. Used only by enq.
     */
    private final boolean compareAndSetTail(Node expect, Node update) {
        return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
    }

    /**
     * CAS waitStatus field of a node.
     */
    private static final boolean compareAndSetWaitStatus(Node node,
                                                         int expect,
                                                         int update) {
        return unsafe.compareAndSwapInt(node, waitStatusOffset,
                                        expect, update);
    }

    /**
     * CAS next field of a node.
     */
    private static final boolean compareAndSetNext(Node node,
                                                   Node expect,
                                                   Node update) {
        return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
    }

AbstractQueuedSynchronizer通过head和tail连接一个逻辑上的队列,我称之为sync队列,与Condition队列区别开来。后面的CAS操作,以后专门写一遍文章来阐述

现在再重新审视一遍Lock版本的生产者-消费者

lock.lock()调用的是非公平锁的lock方法

 

        final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

 

第一个进来的线程如愿的获得了锁,其它的线程调用acquire(1),这个方法在AbstractQueuedSynchronizer

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

这几行代码真是短小精悍!!!tryAcquire方法本来就是留给子类实现自己的逻辑的,又回到非公平锁,然后调用

        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            // 第一个线程已经将state改为1了
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            // 这里处理可重入,每次重入+1
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

然后就会调用addWaiter方法,将线程封装成Node添加到sync队列

    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

这个enq方法是个入队列操作,似乎在死循环,其实循环两次也就返回了,请读者开动脑筋。

成功添加sync队列之后,开始执行acquireQueued方法

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            // 此处才是真正的死循环
            for (;;) {
                final Node p = node.predecessor();
                // 这里要先判断node的前驱节点是否为头节点,然后再尝试获取锁
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    // 当前节点获取锁失败后,是否要将线程park
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        // 前驱节点的等待状态为SIGNAL,可以将当前线程park
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        // 前驱节点的等待状态为CANCELLED,则遍历所有前驱,将所有CANCELLED前驱跳过
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don‘t park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            // 将前驱节点的等待状态设置为SIGNAL
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
    private final boolean parkAndCheckInterrupt() {
        // 将线程park
        LockSupport.park(this);
        // 是否中断
        return Thread.interrupted();
    }

park方法最终会借助操作系统将当前线程阻塞,与之对应的unpark方法会唤醒线程。

以上就是lock.lock()获取锁时的大体逻辑,lock.unlock()释放锁时的逻辑不再赘述,望有心人仔细阅读。

回过头来再说说Condition队列。

full.await()是ConditionObject的方法

 

        public final void await() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            // 将当前阶段加入到Condition等待队列
            Node node = addConditionWaiter();
            // 释放锁
            int savedState = fullyRelease(node);
            int interruptMode = 0;
            // 判断节点是否已经转移到了sync队列,也是一直循环
            while (!isOnSyncQueue(node)) {
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            // 被唤醒之后,再度尝试获取锁
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }

 

addConditionWaiter方法也比较简单,这里不再分析了。

然后就到了full.signal(),signal方法做的事情不多,真正干活的是doSignal方法

 

        private void doSignal(Node first) {
            do {
                if ( (firstWaiter = first.nextWaiter) == null)
                    lastWaiter = null;
                first.nextWaiter = null;
            } while (!transferForSignal(first) &&
                     (first = firstWaiter) != null);
        }

 

signal会将Condition等待队列的头节点,通过transferForSignal转移到sync队列,让节点中的线程去竞争锁以获得执行的机会。有一点值得注意,调用signal方法之后,头节点中的线程并没有马上被唤醒,至于什么时候被唤醒,就得看sync队列里的节点的执行情况了。这和wait-notify是一样的,调用notify方法后,没有马上释放锁,只有执行完synchronized代码后,才会释放锁,让被唤醒的线程获取。

 

synchronized VS Lock, wait-notify VS Condition

标签:ssh   rail   技术   clu   成员   有一个   ldo   lock   exit   

原文地址:http://www.cnblogs.com/cz123/p/7435113.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!