标签:iostream 枚举 segment build null blog blank == problem
二次联通门 : LibreOJ #2013. 「SCOI2016」幸运数字
/* LibreOJ #2013. 「SCOI2016」幸运数字 树链剖分 + 线段树 + 线性基合并 没什么可说的 对原树进行树链剖分 然后建线段树 每个区间维护一段线性基 每次暴力把一段插入另一段中 最后线性基求最大即可 注意线性基求最大时一定是倒着枚举的 */ #include <cstdio> #include <iostream> const int BUF = 12312334; char Buf[BUF], *buf = Buf; #define _L 60 inline void read (int &now) { for (now = 0; !isdigit (*buf); ++ buf); for (; isdigit (*buf); now = now * 10 + *buf - ‘0‘, ++ buf); } typedef long long LL; #define Max 20040 struct E { E *n; int to; }; struct LB { long long v[_L | 1]; inline void Insert (long long key) { for (register int i = _L; i >= 0; -- i) if (key & (1LL << i)) { if (!v[i]) { v[i] = key; break; } key ^= v[i]; } } void Clear () { for (register int i = 0; i <= _L; ++ i) v[i] = 0; } long long Query () { long long res = 0; for (register int i = _L; i >= 0; -- i) if ((res ^ v[i]) > res) res ^= v[i]; return res; } }; inline void read_L (LL &now) { for (now = 0; !isdigit (*buf); ++ buf); for (; isdigit (*buf); now = now * 10 + *buf - ‘0‘, ++ buf); } LL key[Max]; int N, in[Max]; struct S_D { S_D *Left, *Right; LB key; int Mid; }; LB Answer; inline void swap (int &a, int &b) { int now = a; a = b, b = now; } class Segment_Tree { private : S_D poor[Max << 2], *Ta, *Root; inline LB Merge (LB A, LB B) { LB res; res = B; for (register int i = 0; i <= _L; ++ i) if (A.v[i]) res.Insert (A.v[i]); return res; } inline S_D *New (int l, int r) { ++ Ta, Ta->key.Clear (), Ta->Left = Ta->Right = NULL; Ta->Mid = l + r >> 1; return Ta; } void Build (S_D *&now, int l, int r) { now = New (l, r); if (l == r) return ; Build (now->Left, l, now->Mid), Build (now->Right, now->Mid + 1, r); } void C (S_D *&now, int L, int R, int pos, LL to) { if (L == R) { now->key.Insert (to); return ; } if (pos <= now->Mid) C (now->Left, L, now->Mid, pos, to); if (pos > now->Mid) C (now->Right, now->Mid + 1, R, pos, to); now->key = Merge (now->Left->key, now->Right->key); } void Q (S_D *&now, int L, int R, int l, int r) { if (l <= L && R <= r) { Answer = Merge (Answer, now->key); return ; } if (l <= now->Mid) Q (now->Left, L, now->Mid, l, r); if (r > now->Mid) Q (now->Right, now->Mid + 1, R, l, r); } public : Segment_Tree () { Ta = poor; } void Build (int l, int r) { return Build (Root, l, r); } void C (int pos, LL to) { return C (Root, 1, N, pos, to); } void Q (int l, int r) { return Q (Root, 1, N, l, r); } }; Segment_Tree Seg; class Tree_Chain { private : int size[Max], deep[Max], son[Max], chain[Max], father[Max]; E poor[Max << 1], *Ta, *list[Max]; int Count; public : Tree_Chain () { Ta = poor; } void Do () { Dfs_1 (1, 0), Count = 0, Dfs_2 (1, 1); for (register int i = 1; i <= N; ++ i) Seg.C (in[i], key[i]); } void Dfs_1 (int now, int F) { father[now] = F, size[now] = 1, deep[now] = deep[F] + 1; for (E *e = list[now]; e; e = e->n) if (e->to != F) { Dfs_1 (e->to, now), size[now] += size[e->to]; if (size[son[now]] < size[e->to]) son[now] = e->to; } } void Dfs_2 (int now, int P) { chain[now] = P; in[now] = ++ Count; if (son[now]) Dfs_2 (son[now], P); else return ; for (E *e = list[now]; e; e = e->n) if (e->to != son[now] && e->to != father[now]) Dfs_2 (e->to, e->to); } void In (int u, int v) { ++ Ta, Ta->to = v, Ta->n = list[u], list[u] = Ta; ++ Ta, Ta->to = u, Ta->n = list[v], list[v] = Ta; } LL Q (int x, int y) { for (Answer.Clear (); chain[x] != chain[y]; x = father[chain[x]]) { if (deep[chain[x]] < deep[chain[y]]) swap (x, y); Seg.Q (in[chain[x]], in[x]); } if (deep[x] > deep[y]) swap (x, y); Seg.Q (in[x], in[y]); return Answer.Query (); } }; Tree_Chain T; int Main () { fread (buf, 1, BUF, stdin); int Q; read (N), read (Q); register int i; int x, y; for (i = 1; i <= N; ++ i) read_L (key[i]); for (i = 1; i < N; ++ i) read (x), read (y), T.In (x, y); Seg.Build (1, N), T.Do (); for (i = 1; i <= Q; ++ i) { read (x), read (y); printf ("%lld\n", T.Q (x, y)); } return 0; } int ZlycerQan = Main (); int main (int argc, char *argv[]) {;}
标签:iostream 枚举 segment build null blog blank == problem
原文地址:http://www.cnblogs.com/ZlycerQan/p/7435329.html