标签:sel root lock init could solution whether color class
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3]
is symmetric:
1 / 2 2 / \ / 3 4 4 3
But the following [1,2,2,null,3,null,3]
is not:
1 / 2 2 \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
判断一棵树的对称性,利用递归按照对称树的性质判断即可。
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool isSymmetric(TreeNode* root) { if (root == nullptr) return true; return isSymmetricCore(root->left, root->right); } bool isSymmetricCore(TreeNode* s, TreeNode* t) { if (s == nullptr && t == nullptr) return true; if (s == nullptr || t == nullptr) return false; if (s->val != t->val) return false; return isSymmetricCore(s->left, t->right) && isSymmetricCore(s->right, t->left); } }; // 3 ms
用迭代来表述算法,利用两个queue维护一棵树根节点的左右两棵子树节点。然后判断相对应的节点
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool isSymmetric(TreeNode* root) { if (root == nullptr) return true; queue<TreeNode*> q1, q2; q1.push(root->left); q2.push(root->right); while (!q1.empty() && !q2.empty()) { TreeNode* node1 = q1.front(); TreeNode* node2 = q2.front(); q1.pop(); q2.pop(); if ((node1 == nullptr && node2 != nullptr) || (node1 != nullptr && node2 == nullptr)) return false; if (node1 != nullptr && node2 != nullptr) { if (node1->val != node2->val) return false; q1.push(node1->left); q1.push(node1->right); q2.push(node2->right); q2.push(node2->left); } } return true; } }; // 3 ms
标签:sel root lock init could solution whether color class
原文地址:http://www.cnblogs.com/immjc/p/7435876.html