码迷,mamicode.com
首页 > 其他好文 > 详细

Fibonacii非递归

时间:2014-09-05 23:46:32      阅读:252      评论:0      收藏:0      [点我收藏+]

标签:io   使用   问题   sp   代码   on   c   ef   算法   

记得在我们最开始学习C语言的时候,每当讲到递归,无论是课本上,还是老师,都会给出两个经典例子的递归实现,其中一个就是阶乘,另外一个就是Fibonacci(中文多译成斐波那契)数列了。

用递归方法计算阶乘的代码如下:

//递归计算阶乘 
long Factorial(int n) 

    if (n <= 0) 
    { 
        return 1; 
    }

    return n * Factorial(n - 1); 
}

这样的递归是一个很明显的尾部递归的例子,所谓的尾部递归(tail recursion),即递归调用是函数执行的最后一项任务,函数在递归调用返回之后不再做任何事情。尾部递归可以很方便的转换成一个简单循环,完成相同的任务,这样,就将一个递归的实现转化成了非递归实现。

以下是阶乘算法的非递归实现:

//计算阶乘的非递归实现 
long Factorial(int n) 

    long result = 1;

    while (n > 1) 
    { 
        result *= n; 
        n--; 
    } 
    return result; 
}

单从这个改写来看,我们无法看出这样的改写有多大的意义。但是有些时候,递归并不是一种很好的解决问题的方法,最常见的一个问题就是深度递归会造成堆栈溢出的错误!有时候递归还会导致程序效率的下降,下面要说的Fibonacci数列,就是一个很好的反例。

Fibonacci数列使用递归的定义(呃。。。定义就不给了),这种定义容易诱导我们使用递归形式来编程解决这个问题。下面是一个Fibonacci的递归实现,很容易就看懂了,呵呵,就是定义的程序版本:

//递归计算Fibonacci数列的值 
typedef unsigned long ulong; 
ulong Fiblnacci(int n) 

    if (n <= 2) 
    { 
        return 1; 
    } 
    return Fiblnacci(n - 1) + Fiblnacci(n-2); 
}

这样的程序是非常简捷的,有时候,递归的程序实现看上去要比非递归的实现简捷得多。这个时候,你需要在效率和程序的可读性和可维护性上做一些取舍。

这个Fibonacci的递归实现在计算值时,每次递归调用都触发另外两个递归,而这两个递归在调用的时候每个都还要触发两外的两个递归调用,再接下去的调用也是如此。现在,我们知道,这个冗余的递归调用是以几何级数增长的。例如,在递归计算Fibonacci(10)时,Fibonacci(3)的值被计算了21次。而在递归计算Fibonacci(30),这个调用的次数是骇人的317811次!这些个计算实际上只有一次是必要的,其余的纯属浪费!

下面的程序使用一个简单循环来代替递归,这个非递归的形式不如上文给出的递归简单(当然,这个也很简单),也不太符合Fibonacci的递归定义,但是,它的效率提高了几十万倍!

//Fibonacci数列的非递归实现 
typedef unsigned long ulong;

ulong Fibonacci(int n) 

    ulong result; 
    ulong prev_result; 
    ulong next_result;

    result = prev_result = 1;

    while (n > 2) 
    { 
        n--; 
        next_result = prev_result; 
        prev_result = result;

        result = prev_result + next_result; 
    }

    return result;    
}

所以,本文的结论就是,当你使用递归实现一个函数之前,先问问自己使用递归的好处是否抵得上它的代价。当然,编程的时候,无论什么实现方式,我们都应该问问自己这个问题。

注:本文的内容参考自经典书籍《C和指针》(POINTERS ON C)。

Fibonacii非递归

标签:io   使用   问题   sp   代码   on   c   ef   算法   

原文地址:http://www.cnblogs.com/weixiaoyu/p/3958860.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!