标签:build could 元素 efi gets operator method tree structure
Union Find 集合合并,查找元素在集合里面
数组实现
int[] pre; public int find(int x) { int r = x; while (r != pre[r]) { r = pre[r]; } int i = x, j; while (pre[i] != r) { j = pre[i]; pre[i] = r; i = j; } return r; } public void union(int x, int y) { int fx = find(x); int fy = find(y); if (fx != fy) { pre[fx] = fy; } }
hashMap实现
class UnionFind <T>{ private Map<T, T> map = new HashMap<>(); public UnionFind(Set<T> set) { for (T t : set) { map.put(t, t); } } public T find(T x) { T r = x; if (r != map.get(r)) { r = map.get(r); } T i = x, j; while (i != r) { j = map.get(i); map.put(i, r); i = j; } return r; } public void union(T x, T y) { T fx = find(x); T fy = find(y); if (fx != fy) { map.put(fx, fy); } } }
1,找无向图的联通块。 bfs
找出无向图中所有的连通块。 图中的每个节点包含一个label属性和一个邻接点的列表。(一个无向图的连通块是一个子图,其中任意两个顶点通过路径相连,且不与整个图中的其它顶点相连。) 您在真实的面试中是否遇到过这个题? Yes 样例 给定图: A------B C \ | | \ | | \ | | \ | | D E 返回 {A,B,D}, {C,E}。其中有 2 个连通块,即{A,B,D}, {C,E} 标签 相关题目
class UndirectedGraphNode { int label; ArrayList<UndirectedGraphNode> neighbors; UndirectedGraphNode(int x) { label = x; neighbors = new ArrayList<UndirectedGraphNode>(); } } public List<List<Integer>> connectedSet(ArrayList<UndirectedGraphNode> nodes) { List<List<Integer>> result = new ArrayList<>(); if (nodes == null || nodes.size() == 0) { return result; } Map<UndirectedGraphNode, Boolean> map = new HashMap<>(); for (UndirectedGraphNode node : nodes) { map.put(node, false); } for (UndirectedGraphNode node : nodes) { if (!map.get(node)) { find(node, result, map); } } return result; } private void find(UndirectedGraphNode node, List<List<Integer>> result, Map<UndirectedGraphNode, Boolean> map) { ArrayList<Integer> list = new ArrayList<>(); Queue<UndirectedGraphNode> queue = new LinkedList<>(); queue.offer(node); map.put(node, true); while (!queue.isEmpty()) { int size = queue.size(); for (int i = 0; i < size; i++) { UndirectedGraphNode cur = queue.poll(); list.add(cur.label); for (UndirectedGraphNode neighbor : cur.neighbors) { if (!map.get(neighbor)) { map.put(neighbor, true); queue.offer(neighbor); } } } } result.add(list); }
2 Find the Weak Connected Component in the Directed Graph
class DirectedGraphNode { int label; ArrayList<DirectedGraphNode> neighbors; DirectedGraphNode(int x) { label = x; neighbors = new ArrayList<DirectedGraphNode>(); } } public List<List<Integer>> connectedSet2(ArrayList<DirectedGraphNode> nodes) { List<List<Integer>> result = new ArrayList<>(); if (nodes == null || nodes.size() == 0) { return result; } Set<Integer> set = new HashSet<>(); for (DirectedGraphNode node : nodes) { set.add(node.label); } UnionFind uf = new UnionFind(set); for (DirectedGraphNode node : nodes) { for (DirectedGraphNode neighbor : node.neighbors) { uf.union(node.label, neighbor.label); } } Map<Integer, List<Integer>> map = new HashMap<>(); for (DirectedGraphNode node : nodes) { int parent = uf.find(node.label); if (!map.containsKey(parent)) { map.put(parent, new ArrayList<Integer>()); } else { map.get(parent).add(node.label); } } for (List<Integer> list : map.values()) { result.add(list); } return result; }
3 Number of Islands
public class Solution { /** * @param grid a boolean 2D matrix * @return an integer */ int m; int n; int[] dx = {0, 0, 1, -1}; int[] dy = {-1, 1, 0, 0}; public int numIslands(boolean[][] grid) { if (grid == null || grid.length == 0 || grid[0].length == 0) { return 0; } int islands = 0; m = grid.length; n = grid[0].length; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (grid[i][j]) { islands++; bfs(grid, i, j); } } } return islands; } void bfs(boolean[][] grid, int i, int j) { Queue<Integer> queue = new LinkedList<>(); queue.offer(i * n + j); while (!queue.isEmpty()) { int size = queue.size(); for (int k = 0; k < size; k++) { int cur = queue.poll(); int x = cur / n; int y = cur % n; grid[x][y] = false; for (int h = 0; h < 4; h++) { int nx = x + dx[h]; int ny = y + dy[h]; if (isValue(grid, nx, ny)) { queue.offer(nx * n + ny); } } } } } boolean isValue(boolean[][] grid, int x, int y) { return x >= 0 && x < m && y >= 0 && y < n && grid[x][y]; } }
public class Solution { /** * @param grid a boolean 2D matrix * @return an integer */ int m; int n; int[] dx = {0, 0, 1, -1}; int[] dy = {-1, 1, 0, 0}; public int numIslands(boolean[][] grid) { if (grid == null || grid.length == 0 || grid[0].length == 0) { return 0; } int islands = 0; m = grid.length; n = grid[0].length; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (grid[i][j]) { islands++; dfs(grid, i, j); } } } return islands; } void dfs(boolean[][] grid, int i, int j) { if (!isValue(grid, i, j)) return; grid[i][j] = false; for (int k = 0; k < 4; k++) { int x = i + dx[k]; int y = j + dy[k]; dfs(grid, x, y); } } boolean isValue(boolean[][] grid, int x, int y) { return x >= 0 && x < m && y >= 0 && y < n && grid[x][y]; } }
4 3 Number of Islands 2
描述 笔记 数据 评测 给定 n,m,分别代表一个2D矩阵的行数和列数,同时,给定一个大小为 k 的二元数组A。起初,2D矩阵的行数和列数均为 0,即该矩阵中只有海洋。二元数组有 k 个运算符,每个运算符有 2 个整数 A[i].x, A[i].y,你可通过改变矩阵网格中的A[i].x],[A[i].y] 来将其由海洋改为岛屿。请在每次运算后,返回矩阵中岛屿的数量。 注意事项 0 代表海,1 代表岛。如果两个1相邻,那么这两个1属于同一个岛。我们只考虑上下左右为相邻。 您在真实的面试中是否遇到过这个题? Yes 样例 给定 n = 3, m = 3, 二元数组 A = [(0,0),(0,1),(2,2),(2,1)]. 返回 [1,1,2,2].
public class Jdbct { class Point { int x; int y; Point() { x = 0; y = 0; } Point(int a, int b) { x = a; y = b; } } public List<Integer> numIslands2(int m, int n, Point[] operators) { List<Integer> result = new ArrayList<>(); if (operators == null || operators.length == 0) { return result; } int[][] island = new int[m][n]; Set<Integer> set = new HashSet<>(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { set.add(i * n + j); } } int[] dx = {-1, 1, 0, 0}; int[] dy = {0, 0, -1, 1}; UnionFind uf = new UnionFind(set); int count = 0; for (Point point : operators) { int x = point.x; int y = point.y; if (island[x][y] == 0) { island[x][y] = 1; count++; for (int i = 0; i < 4; i++) { int newX = x + dx[i]; int newY = y + dy[i]; if (newX >= 0 && newX < m && newY >= 0 && newY < n && island[newX][newY] == 1){ int x_father = uf.find(x * n + y); int newX_father = uf.find(newX * n + newY); if (x_father != newX_father) { count--; uf.union(x * n + y, newX * n + newY); } } } } result.add(count); } return result; } } class UnionFind { private Map<Integer, Integer> map = new HashMap<>(); public UnionFind(Set<Integer> set) { for (int t : set) { map.put(t, t); } } public int find(int x) { int r = x; if (r != map.get(r)) { r = map.get(r); } int i = x, j; while (i != r) { j = map.get(i); map.put(i, r); i = j; } return r; } public void union(int x, int y) { int fx = find(x); int fy = find(y); if (fx != fy) { map.put(fx, fy); } } }
5 Surrounded Regions
public void surroundedRegions(char[][] board) { // Write your code here if (board == null || board.length <= 1 || board[0].length <= 1) { return; } for (int i = 0; i < board[0].length; i++) { fill(board, 0, i); fill(board, board.length - 1, i); } for (int i = 0; i < board.length; i++) { fill(board, i, 0); fill(board, i, board[0].length - 1); } for (int i = 0; i < board.length; i++) { for (int j = 0; j < board[0].length; j++) { if (board[i][j] == ‘O‘) { board[i][j] = ‘X‘; } else if (board[i][j] == ‘#‘) { board[i][j] = ‘O‘; } } } } public void fill(char[][] board, int i, int j) { if (i < 0 || i >= board.length || j < 0 || j >= board[0].length || board[i][j] != ‘O‘) { return; } board[i][j] = ‘#‘; fill(board, i + 1, j); fill(board, i - 1, j); fill(board, i, j - 1); fill(board, i, j + 1); }
6 Graph Valid Tree
public boolean validTree(int n, int[][] edges) { // Write your code here if (n == 0) { return false; } if (edges.length != n - 1) { return false; } Union u = new Union(n); for (int i = 0; i < edges.length; i++){ if (u.find(edges[i][0]) == u.find(edges[i][1])){ return false; } u.union(edges[i][0], edges[i][1]); } return true; } } class Union{ HashMap<Integer, Integer> map = new HashMap<>(); public Union(int n){ for (int i = 0; i < n; i++){ map.put(i, i); } } public int find(int x){ int r = map.get(x); while (r != map.get(r)){ r = map.get(r); } int j = x, i; while (r != j){ i = map.get(j); map.put(j, r); j = i; } return r; } public void union(int x, int y){ int fx = find(x), fy = find(y); if (fx != fy){ map.put(x, fy); } } }
Trie 快速找到一个元素,一个字母一个字母查找
1 Implement Trie
class TrieNode { public TrieNode[] children = new TrieNode[26]; public String item = ""; // Initialize your data structure here. public TrieNode() { } } class Trie { private TrieNode root; public Trie() { root = new TrieNode(); } // Inserts a word into the trie. public void insert(String word) { TrieNode node = root; for (char c : word.toCharArray()) { if (node.children[c - ‘a‘] == null) { node.children[c - ‘a‘] = new TrieNode(); } node = node.children[c - ‘a‘]; } node.item = word; } // Returns if the word is in the trie. public boolean search(String word) { TrieNode node = root; for (char c : word.toCharArray()) { if (node.children[c - ‘a‘] == null) return false; node = node.children[c - ‘a‘]; } return node.item.equals(word); } // Returns if there is any word in the trie // that starts with the given prefix. public boolean startsWith(String prefix) { TrieNode node = root; for (char c : prefix.toCharArray()) { if (node.children[c - ‘a‘] == null) return false; node = node.children[c - ‘a‘]; } return true; } }
class TrieNode { TrieNode[] children = new TrieNode[26]; boolean hasWord = false; public void insert(String word, int index) { if (word.length() == index) { this.hasWord = true; return; } int pos = word.charAt(index) - ‘a‘; if (children[pos] == null) { children[pos] = new TrieNode(); } children[pos].insert(word, index + 1); } public TrieNode find(String word, int index) { if (word.length() == index) { return this; } int pos = word.charAt(index) - ‘a‘; if (children[pos] == null) { return null; } return children[pos].find(word, index + 1); } } class Trie { private TrieNode root; public Trie() { root = new TrieNode(); } // Inserts a word into the trie. public void insert(String word) { root.insert(word, 0); } // Returns if the word is in the trie. public boolean search(String word) { TrieNode node = root.find(word, 0); return (node != null && node.hasWord); } // Returns if there is any word in the trie // that starts with the given prefix. public boolean startsWith(String prefix) { TrieNode node = root.find(prefix, 0); return node != null; } }
2 Word Search
public boolean exist(char[][] board, String word) { // write your code here if (word == null || word.length() == 0) { return true; } if (board == null || board.length == 0 || board[0].length == 0) { return false; } for (int i = 0; i < board.length; i++) { for (int j = 0; j < board[0].length; j++) { if (check(board, word, new boolean[board.length][board[0].length], 0, i, j)) { return true; } } } return false; } private boolean check(char[][] board, String word, boolean[][] bs, int len, int i, int j) { // TODO Auto-generated method stub if (len == word.length()) { return true; } if (i < 0 || j < 0 || i >= board.length || j >= board[0].length || bs[i][j]|| board[i][j] != word.charAt(len)) { return false; } bs[i][j] = true; boolean res = check(board, word, bs, len + 1, i + 1, j) || check(board, word, bs, len + 1, i - 1, j) || check(board, word, bs, len + 1, i, j + 1) || check(board, word, bs, len + 1, i, j - 1); bs[i][j] = false; return res; }
3 Word Search II
public class Solution { Set<String> res = new HashSet<String>(); int m = 0, n = 0; Trie trie = new Trie(); public List<String> findWords(char[][] board, String[] words) { m = board.length; n = board[0].length; for (String s : words){ trie.insert(s); } boolean[][] visited = new boolean[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++){ help(board, visited, "", i, j); } } return new ArrayList<>(res); } public void help(char[][] board, boolean[][] visited, String item, int i, int j){ if (i < 0 || i >= m || j < 0 || j >= n || visited[i][j]) return; item = item + board[i][j]; if (!trie.startsWith(item)) return; if (trie.search(item)) res.add(item); visited[i][j] = true; help(board, visited, item, i - 1, j); help(board, visited, item, i + 1, j); help(board, visited, item, i, j - 1); help(board, visited, item, i, j + 1); visited[i][j] = false; } } class TrieNode { public TrieNode[] children = new TrieNode[26]; public String item = ""; // Initialize your data structure here. public TrieNode() { } } class Trie { private TrieNode root; public Trie() { root = new TrieNode(); } // Inserts a word into the trie. public void insert(String word) { TrieNode node = root; for (char c : word.toCharArray()) { if (node.children[c - ‘a‘] == null) { node.children[c - ‘a‘] = new TrieNode(); } node = node.children[c - ‘a‘]; } node.item = word; } // Returns if the word is in the trie. public boolean search(String word) { TrieNode node = root; for (char c : word.toCharArray()) { if (node.children[c - ‘a‘] == null) return false; node = node.children[c - ‘a‘]; } return node.item.equals(word); } // Returns if there is any word in the trie // that starts with the given prefix. public boolean startsWith(String prefix) { TrieNode node = root; for (char c : prefix.toCharArray()) { if (node.children[c - ‘a‘] == null) return false; node = node.children[c - ‘a‘]; } return true; } }
4 Add and Search Word
public class WordDictionary { private TrieNode root = new TrieNode(); // Adds a word into the data structure. public void addWord(String word) { // Write your code here TrieNode node = root; for (int i = 0; i < word.length(); i++){ char c = word.charAt(i); if (node.children[c - ‘a‘] == null){ node.children[c - ‘a‘] = new TrieNode(); } node = node.children[c - ‘a‘]; } node.hasWord = true; } // Returns if the word is in the data structure. A word could // contain the dot character ‘.‘ to represent any one letter. public boolean search(String word) { // Write your code here return find(word, 0, root); } public boolean find(String word, int index, TrieNode now){ if (index == word.length()){ return now.hasWord; } char c = word.charAt(index); if (c == ‘.‘){ for (int i = 0; i < 26; i++){ if (now.children[i] != null){ if (find(word, index + 1, now.children[i])){ return true; } } } return false; } else if (now.children[c - ‘a‘] != null){ return find(word, index + 1, now.children[c - ‘a‘]); } else { return false; } } } class TrieNode{ public TrieNode[] children; public boolean hasWord; public TrieNode(){ children = new TrieNode[26]; hasWord = false; } }
Scan-Line 区间拆分
1 Number of Airplane in the sky
class Solution { /** * @param intervals: An interval array * @return: Count of airplanes are in the sky. */ public int countOfAirplanes(List<Interval> airplanes) { // write your code here List<Point> list = new ArrayList<Point>(); for (Interval i : airplanes){ list.add(new Point(i.start, 1)); list.add(new Point(i.end, 0)); } Collections.sort(list, new Comparator<Point>() { public int compare(Point p1, Point p2) { if (p1.time == p2.time) { return p1.flag - p2.flag; } else { return p1.time - p2.time; } } }); int count = 0, res = 0; for (Point p : list){ if (p.flag == 1){ count++; } else{ count--; } res = Math.max(count, res); } return res; } } class Point{ int time; int flag; Point(int time, int flag){ this.time = time; this.flag = flag; } }
heap定义:
java的 PriorityQueue是一个小顶堆,用于找最大前K个严肃。sort可重写。在本博客下面一个地方有详细介绍。
1 Trapping Rain Water
public int trapRainWater(int[] heights) { if (heights == null || heights.length == 0) { return 0; } int res = 0; int l = 0; int r = heights.length - 1; int left_height = heights[l]; int right_height = heights[r]; while (l < r) { if (left_height < right_height) { l++; if (left_height > heights[l]) { res += left_height - heights[l]; } else { left_height = heights[l]; } } else { r--; if (right_height > heights[r]) { res += right_height - heights[r]; } else { right_height = heights[r]; } } } return res; }
2 Trapping Rain Water II
public class Solution { /** * @param heights: a matrix of integers * @return: an integer */ class Point{ int x, y, h; public Point(int x, int y, int h) { this.x = x; this.y = y; this.h = h; } } public int trapRainWater(int[][] heights) { if (heights == null || heights.length == 0 || heights[0].length == 0) { return 0; } int m = heights.length; int n = heights[0].length; int[] dx = {0, 0, -1, 1}; int[] dy = {-1, 1, 0, 0}; int res = 0; Queue<Point> q = new PriorityQueue<>((p1, p2)->p1.h - p2.h); boolean[][] visited = new boolean[m][n]; for (int i = 0; i < n; i++) { q.add(new Point(0, i, heights[0][i])); visited[0][i] = true; q.add(new Point(m - 1, i, heights[m - 1][i])); visited[m - 1][i] = true; } for (int i = 0; i < m; i++) { q.add(new Point(i, 0, heights[i][0])); visited[i][0] = true; q.add(new Point(i, n -1, heights[i][n - 1])); visited[i][n - 1] = true; } while (!q.isEmpty()) { Point p = q.poll(); for (int k = 0; k < 4; k++) { int newX = p.x + dx[k]; int newY = p.y + dy[k]; if (newX < 0 || newX >= m || newY < 0 || newY >= n || visited[newX][newY]) { continue; } visited[newX][newY] = true; q.add(new Point(newX, newY, Math.max(p.h, heights[newX][newY]))); res += Math.max(0, p.h - heights[newX][newY]); } } return res; } }
3 Building Outline
public List<int[]> getSkyline(int[][] build) { List<int[]> res = new ArrayList<>(); List<int[]> point = new ArrayList<>(); for (int i = 0; i < build.length; i++){ point.add(new int[]{build[i][0], build[i][2]}); point.add(new int[]{build[i][1], -build[i][2]}); } Collections.sort(point, (a,b)->{ if (a[0] == b[0]) return b[1] - a[1]; return a[0] - b[0]; }); Queue<Integer> q = new PriorityQueue<>((a,b)->(b - a)); int pre = 0, cur = 0; for (int[] p : point){ if (p[1] > 0) { q.offer(p[1]); cur = q.peek(); } else { q.remove(-p[1]); cur = q.isEmpty() ? 0 : q.peek(); } if (pre != cur){ res.add(new int[]{p[0], cur}); pre = cur; } } return res; }
4 Heapify
private void siftdown(int[] A, int k) { while (k < A.length) { int smallest = k; if (k * 2 + 1 < A.length && A[k * 2 + 1] < A[smallest]) { smallest = k * 2 + 1; } if (k * 2 + 2 < A.length && A[k * 2 + 2] < A[smallest]) { smallest = k * 2 + 2; } if (smallest == k) { break; } int temp = A[smallest]; A[smallest] = A[k]; A[k] = temp; k = smallest; } } public void heapify(int[] A) { for (int i = A.length / 2; i >= 0; i--) { siftdown(A, i); } // for }
5 Data Stream Median
public int[] medianII(int[] nums) { // write your code here Comparator<Integer> comp = new Comparator<Integer>(){ public int compare(Integer left, Integer right) { return right - left; } }; int len = nums.length; PriorityQueue<Integer> minQ = new PriorityQueue<>(); PriorityQueue<Integer> maxQ = new PriorityQueue<>(comp); int[] res = new int[len]; res[0] = nums[0]; maxQ.add(nums[0]); for (int i = 1; i < len; i++) { int x = maxQ.peek(); if (nums[i] < x) { maxQ.add(nums[i]); } else { minQ.add(nums[i]); } if (maxQ.size() > minQ.size() + 1){ minQ.add(maxQ.poll()); } else if (minQ.size() > maxQ.size()){ maxQ.add(minQ.poll()); } res[i] = maxQ.peek(); } return res; }
6 Sliding Window Median 拆成两个步骤 1 加入一个元素,2删除一个元素, 求中位数
public ArrayList<Integer> medianSlidingWindow(int[] nums, int k) { // write your code here ArrayList<Integer> res = new ArrayList<>(); if (nums == null || nums.length == 0 || k <= 0) return res; PriorityQueue<Integer> max = new PriorityQueue<>((a,b)->(b - a)); PriorityQueue<Integer> min = new PriorityQueue<>(); int mid = nums[0]; for (int i = 0; i < nums.length; i++) { if (i != 0) { if (nums[i] > mid) { min.add(nums[i]); } else { max.add(nums[i]); } } if (i >= k) { if (mid == nums[i - k]) { if (max.size() > 0) { mid = max.poll(); } else if (min.size() > 0) { mid = min.poll(); } } else if (mid > nums[i - k]) { max.remove(nums[i - k]); } else { min.remove(nums[i - k]); } } while (max.size() > min.size()) { min.add(mid); mid = max.poll(); } while (min.size() > max.size() + 1) { max.add(mid); mid = min.poll(); } if (i >= k - 1) { res.add(mid); } } return res; }
7 sliding-window-maximum
public ArrayList<Integer> maxSlidingWindow(int[] nums, int k) { // write your code here ArrayList<Integer> res = new ArrayList<>(); if (nums == null || nums.length == 0 || k <= 0) { return res; } Deque<Integer> q = new ArrayDeque<Integer>(); for (int i = 0; i < nums.length; i++) { while (!q.isEmpty() && nums[i] > q.peekLast()){ q.pollLast(); } q.offer(nums[i]); if (i > k - 1 && q.peekFirst() == nums[i - k]) { q.pollFirst(); } if (i >= k - 1) { res.add(q.peekFirst()); } } return res; }
标签:build could 元素 efi gets operator method tree structure
原文地址:http://www.cnblogs.com/whesuanfa/p/7453591.html