码迷,mamicode.com
首页 > 其他好文 > 详细

统计学习方法[6]——逻辑回归模型

时间:2017-08-31 16:46:53      阅读:168      评论:0      收藏:0      [点我收藏+]

标签:strong   线性回归   差值   回归   又能   margin   模型   最小   func   

统计学习方法由三个要素组成:方法=模型+策略+算法

模型是针对具体的问题做的假设空间,是学习算法要求解的参数空间。例如模型可以是线性函数等。

策略是学习算法学习的目标,不同的问题可以有不同的学习目标,例如经验风险最小化或者结构风险最小化。

经验风险最小化中常见的损失函数有:0-1损失函数、残差损失函数、绝对值损失函数、平方损失函数、对数损失函数等等。

算法是按照上述策略求解模型的具体计算方法。模型定义了要求什么,策略定义了按照什么标准去求,算法则具体去解决。


线性回归模型

线性回归模型,众所周知就是给定给定训练集(Xi,Yi),模拟一个一次线性函数Y‘=∑ΘiXi(模型),使得误差J(Y,Y‘)尽可能最小(策略)。

如果要用线性回归问题解决分类问题的话,需要将线性回归函数转换成0-1分布的函数,逻辑斯蒂函数就是这样一个函数,可以将值映射为区间(0,1)上,同时又能很好的表示概率意义。

那么如何求解参数使损失函数最小呢?

当然可以用暴力搜索所有的参数值Θ,但是效率肯定很低,所以用有目标的(启发式)搜索算法代替暴力搜索。这里的目标就是上述损失函数最小策略。

假设空间参数是经验风险的函数!举个例子,对于

技术分享

技术分享

如果Θ0 一直为 0, 则Θ1与J的函数为:
 
技术分享
如果有Θ0与Θ1都不固定,则Θ0、Θ1、J 的函数为:
 

技术分享

梯度下降法

大致步骤如下:

1、随机初始化参数Θ,并给定一个学习速率α(下降的步长)

2、求解目标函数(损失函数)相对于各个参数分量Θi的偏导数

3、循环同步迭代Θi直到达到终止条件(迭代次数或者一个误差值)

技术分享

问题:怎么取α值?
答:随时观察α值,如果cost function变小了,则ok,反之,则再取一个更小的值。
下图就详细的说明了梯度下降的过程:

技术分享
另外需要注意的是梯度下降法求解的是局部最优解(除非损失函数是凸的),跟初始点由很大的关系,可以多次取不同初始值求解后取最优值。

 

统计学习方法[6]——逻辑回归模型

标签:strong   线性回归   差值   回归   又能   margin   模型   最小   func   

原文地址:http://www.cnblogs.com/vincent-vg/p/7459030.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!