标签:down bin transform machine pass svc epo tar func
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import pylab as pl from sklearn import svm # we create 40 separable points np.random.seed(0)#每次运行结果不变 X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] #randn20,0 产生20个点每个点两维 #-+[2,2]正态分布范围 Y = [0]*20 +[1]*20 print(X,Y) #fit the model clf = svm.SVC(kernel=‘linear‘) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0]/w[1]#斜率 xx = np.linspace(-5, 5) yy = a*xx - (clf.intercept_[0])/w[1]#clf.intercept_[0]bias偏置 # plot the parallels to the separating hyperplane that pass through the support vectors b = clf.support_vectors_[0] yy_down = a*xx + (b[1] - a*b[0]) b = clf.support_vectors_[-1] yy_up = a*xx + (b[1] - a*b[0]) print "w: ", w print "a: ", a # print "xx: ", xx # print "yy: ", yy print "support_vectors_: ", clf.support_vectors_ print "clf.coef_: ", clf.coef_ # switching to the generic n-dimensional parameterization of the hyperplan to the 2D-specific equation # of a line y=a.x +b: the generic w_0x + w_1y +w_3=0 can be rewritten y = -(w_0/w_1) x + (w_3/w_1) # plot the line, the points, and the nearest vectors to the plane pl.plot(xx, yy, ‘k-‘) pl.plot(xx, yy_down, ‘k--‘) pl.plot(xx, yy_up, ‘k--‘) pl.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors=‘none‘) pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired) pl.axis(‘tight‘) pl.show()
人脸识别
#!/usr/bin/env python # -*- coding: utf-8 -*- """ __title__ = ‘‘ __author__ = ‘wlc‘ __mtime__ = ‘2017/9/1‘ """ #!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function from time import time import logging#打印程序进展 import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.datasets import fetch_lfw_people from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import RandomizedPCA from sklearn.svm import SVC print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format=‘%(asctime)s %(message)s‘) ############################################################################### # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)#名人脸数据集 # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data#每一行是一个实例每一列是特征值 n_features = X.shape[1] #特征向量的维度每个人提取的特征值 # the label to predict is the id of the person y = lfw_people.target#每个实例的label target_names = lfw_people.target_names#label名 n_classes = target_names.shape[0]#类个数 print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) ############################################################################### # Split into a training set and a test set using a stratified k fold # split into a training and testing set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25) ############################################################################### # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 #pca降维高维降低成低纬度 print("Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0])) t0 = time() pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0)) ############################################################################### # Train a SVM classification model print("Fitting the classifier to the training set") t0 = time() param_grid = {‘C‘: [1e3, 5e3, 1e4, 5e4, 1e5], ‘gamma‘: [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }#使用多少特征点 clf = GridSearchCV(SVC(kernel=‘rbf‘, class_weight=‘balanced‘), param_grid) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_) ############################################################################### # Quantitative evaluation of the model quality on the test set print("Predicting people‘s names on the test set") t0 = time() y_pred = clf.predict(X_test_pca) print("done in %0.3fs" % (time() - t0)) print(classification_report(y_test, y_pred, target_names=target_names)) print(confusion_matrix(y_test, y_pred, labels=range(n_classes))) ############################################################################### # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(‘ ‘, 1)[-1] true_name = target_names[y_test[i]].rsplit(‘ ‘, 1)[-1] return ‘predicted: %s\ntrue: %s‘ % (pred_name, true_name) prediction_titles = [title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])] plot_gallery(X_test, prediction_titles, h, w) # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show()
标签:down bin transform machine pass svc epo tar func
原文地址:http://www.cnblogs.com/wlc297984368/p/7465056.html