标签:地理 生物 根据 数据源 大数 方案 效果 条件 应用
数据源:
检测数据:患者血清、口腔黏膜数据、基因测序等。
其它数据:体检数据、电子病历、遗传记录、患者调查、地理区域以及生活条件等。
实现路径:
首先采取患者样本,通过测序得到基因序列,接着采用大数据技术与原始基因比对,锁定突变基因,通过分析做出正确的诊断,进而全面、系统、准确地解读肿瘤药物与突变基因的关系,同时根据患者的个体差异性,辅助医生选择合适的治疗药物,制定个体化的治疗方案,实现“ 同病异治” 或“ 异病同治” ,从而延长患者的生存时间。
应用效果:
癌症诊断和预测。肿瘤医院的病人中有 60%至 80%刚到医院时就已经进入中晚期,癌症早期的筛查可以帮助患者有针对性的改善生活习惯或者采取个体化的辅助治疗,有益于身体健康;同时将癌症扼杀在摇篮里,从而降低日后巨大的医药开支和生活困扰。助力个性化医疗。结合生物大数据,挖掘疾病分子机制最终可以做到更好的筛查,更好的临床指导以及更好用药的过程。
标签:地理 生物 根据 数据源 大数 方案 效果 条件 应用
原文地址:http://www.cnblogs.com/poonxiujet/p/7472838.html