标签:ram 还需要 连续 end xxx struct cte 如何 abort
快乐虾
http://blog.csdn.NET/lights_joy/
lights@hb165.com
本文适用于
QEMU-0.10.5
VS2008
欢迎转载,但请保留作者信息
在PC机中,由于早期版本的系统资源限制,其物理内存被分为多个不同的区域,并一直延续至今,那么QEMU是如何对这种静态内存布局进行模拟的呢?
虽然PC机的物理内存被人为地分为多个不同的区域,但是在物理结构上它们仍然是连续的,因此qemu直接从宿主机中分配了一块内存:
int main(int argc, char **argv, char **envp)
{
…………………….
/* init the memory */
phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
if (machine->ram_require & RAMSIZE_FIXED) {
if (ram_size > 0) {
if (ram_size < phys_ram_size) {
fprintf(stderr, "Machine `%s‘ requires %llu bytes of memory/n",
machine->name, (unsigned long long) phys_ram_size);
exit(-1);
}
phys_ram_size = ram_size;
} else
ram_size = phys_ram_size;
} else {
if (ram_size == 0)
ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
phys_ram_size += ram_size;
}
phys_ram_base = qemu_vmalloc(phys_ram_size);
if (!phys_ram_base) {
fprintf(stderr, "Could not allocate physical memory/n");
exit(1);
}
………………………….
return 0;
}
在这一段代码里面,ram_size变量的值可以通过“-m megs”参数指定,如果没指定则取默认值DEFAULT_RAM_SIZE,即:
#define DEFAULT_RAM_SIZE 128
但总共分配的内存并不只这些,还要加上machine->ram_require的大小,这个值来自于预定义的常量,对于pc模拟而言就是:
QEMUMachine pc_machine = {
/*.name =*/ "pc",
/*.desc =*/ "Standard PC",
/*.init =*/ pc_init_pci,
/*.ram_require =*/ VGA_RAM_SIZE + PC_MAX_BIOS_SIZE,
/*.nodisk_ok =*/ 0,
/*.use_scsi =*/ 0,
/*.max_cpus =*/ 255,
/*.next =*/ NULL
};
也就是说,总共分配的内存还要加上VGA_RAM_SIZE 和 PC_MAX_BIOS_SIZE:
#define VGA_RAM_SIZE (8192 * 1024)
#define PC_MAX_BIOS_SIZE (4 * 1024 * 1024)
总共12M。
在分配了内存后,将其指针保存在phys_ram_base这一全局变量中,猜测以后虚拟机访问SDRAM的操作都将访问此内存块。
如果要从前面分配的大内存块中取一小块,则必须使用qemu_ram_alloc函数:
/* XXX: better than nothing */
ram_addr_t qemu_ram_alloc(ram_addr_t size)
{
ram_addr_t addr;
if ((phys_ram_alloc_offset + size) > phys_ram_size) {
fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")/n",
(uint64_t)size, (uint64_t)phys_ram_size);
abort();
}
addr = phys_ram_alloc_offset;
phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
if (kvm_enabled())
kvm_setup_guest_memory(phys_ram_base + addr, size);
return addr;
}
从这个函数可以看出,它使用了按顺序从低到高分配这种很简单的手段,用phys_ram_alloc_offset这一个全局变量记录当前已经分配了多少内存。
需要注意的是,这个函数最后返回的也是一个偏移量,而不是宿主机上的实际内存地址。
对于使用qemu_ram_alloc分配出来的内存块,通常还需要调用cpu_register_physical_memory进行注册:
static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset)
{
cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
}
/* register physical memory. ‘size‘ must be a multiple of the target
page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
io memory page. The address used when calling the IO function is
the offset from the start of the region, plus region_offset. Both
start_region and regon_offset are rounded down to a page boundary
before calculating this offset. This should not be a problem unless
the low bits of start_addr and region_offset differ. */
void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset,
ram_addr_t region_offset)
{
……………..
region_offset &= TARGET_PAGE_MASK;
size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
end_addr = start_addr + (target_phys_addr_t)size;
for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
p = phys_page_find(addr >> TARGET_PAGE_BITS);
if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
………………
} else {
p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
p->phys_offset = phys_offset;
p->region_offset = region_offset;
if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
(phys_offset & IO_MEM_ROMD)) {
phys_offset += TARGET_PAGE_SIZE;
} else {
………..
}
}
region_offset += TARGET_PAGE_SIZE;
}
…………….
}
从这段代码可以猜测到,QEMU对每一个注册进来的内存块都进行了分页,每一个页面大小为4K,且用一个结构体对这些页进行描述:
typedef struct PhysPageDesc {
/* offset in host memory of the page + io_index in the low bits */
ram_addr_t phys_offset;
ram_addr_t region_offset;
} PhysPageDesc;
然后采用某种机制对此结构体的变量进行管理。在这个结构体里的phys_offset指出这个页面的实际内容存放的位置,通过这个偏移量和phys_ram_base可以访问到这个页面的实际内容,也是通过这个手段实现了对bios内容的映射。而region_offset则指出这个内存页在其所属的内存块中的偏移量,其数值为4K的整数倍。
在QEMU启动对X86结构的模拟时,会调用一个叫pc_init1的函数:
/* PC hardware initialisation */
static void pc_init1(ram_addr_t ram_size, int vga_ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename,
int pci_enabled, const char *cpu_model)
{
…………………..
/* allocate RAM */
ram_addr = qemu_ram_alloc(0xa0000);
cpu_register_physical_memory(0, 0xa0000, ram_addr);
/* Allocate, even though we won‘t register, so we don‘t break the
* phys_ram_base + PA assumption. This range includes vga (0xa0000 - 0xc0000),
* and some bios areas, which will be registered later
*/
ram_addr = qemu_ram_alloc(0x100000 - 0xa0000);
ram_addr = qemu_ram_alloc(below_4g_mem_size - 0x100000);
cpu_register_physical_memory(0x100000,
below_4g_mem_size - 0x100000,
ram_addr);
………………….
/* allocate VGA RAM */
vga_ram_addr = qemu_ram_alloc(vga_ram_size);
/* BIOS load */
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
bios_size = get_image_size(buf);
if (bios_size <= 0 ||
(bios_size % 65536) != 0) {
goto bios_error;
}
bios_offset = qemu_ram_alloc(bios_size);
ret = load_image(buf, phys_ram_base + bios_offset);
if (ret != bios_size) {
bios_error:
fprintf(stderr, "qemu: could not load PC BIOS ‘%s‘/n", buf);
exit(1);
}
if (cirrus_vga_enabled || std_vga_enabled || vmsvga_enabled) {
/* VGA BIOS load */
if (cirrus_vga_enabled) {
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_CIRRUS_FILENAME);
} else {
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_FILENAME);
}
vga_bios_size = get_image_size(buf);
if (vga_bios_size <= 0 || vga_bios_size > 65536)
goto vga_bios_error;
vga_bios_offset = qemu_ram_alloc(65536);
ret = load_image(buf, phys_ram_base + vga_bios_offset);
if (ret != vga_bios_size) {
vga_bios_error:
fprintf(stderr, "qemu: could not load VGA BIOS ‘%s‘/n", buf);
exit(1);
}
/* setup basic memory access */
cpu_register_physical_memory(0xc0000, 0x10000,
vga_bios_offset | IO_MEM_ROM);
}
/* map the last 128KB of the BIOS in ISA space */
isa_bios_size = bios_size;
if (isa_bios_size > (128 * 1024))
isa_bios_size = 128 * 1024;
cpu_register_physical_memory(0x100000 - isa_bios_size,
isa_bios_size,
(bios_offset + bios_size - isa_bios_size) | IO_MEM_ROM);
………………………..
/* map all the bios at the top of memory */
cpu_register_physical_memory((uint32_t)(-bios_size),
bios_size, bios_offset | IO_MEM_ROM);
………………………
}
这段代码按从低到高的顺序依次注册了几个内存块:
l 常规内存(Conventional Memory):系统内存的第一个640 KB就是著名的常规内存。它是标准DOS程序、DOS驱动程序、常驻内存程序等可用的区域,它们统统都被放置在00000h~9FFFFh之间。
l 上位内存区(Upper Memory Area):系统内存的第一个1M内存顶端的384 KB(1024 KB - 640 KB)就是UMA,它紧随在常规内存之后。也就是说,第一个1M内存被分成640KB常规内存和384KB的UMA。这个区域是系统保留区域,用户程序不能使用它。它一部分被系统设备(CGA、VGA等)使用,另外一部分被用做ROM shadowing和Drivers。UMA使用内存区域A0000h~FFFFFh。
l 扩展内存(Extended Memory):从0x100000到系统物理内存的最大值之间的区域都属于扩展内存。当一个OS运行在Protected Mode时,它可以被访问,而在Real Mode下,则无法被访问(除非通过某些Hacker方法)。
本来扩展内存的第一个64K可以独立出来称之为HMA,但是从上面的代码可以看到,QEMU并没有将之单独列出来。
紧接着要模拟的物理内存之后,QEMU分配了8M的显存。
在显存之后,分配了一块空间给bios,而这段空间的内容则直接来自于bios.bin这一文件,QEMU提供的bios.bin大小为128K。
在bios之后,分配了64K的空间给vga bios,而这段的内容则来自于vgabios-cirrus.bin文件。
winqemu代码的使用(2009-7-10)
http://blog.csdn.net/lights_joy/article/details/4354238
标签:ram 还需要 连续 end xxx struct cte 如何 abort
原文地址:http://www.cnblogs.com/findumars/p/7475906.html