标签:scramble string leetcode 动态规划
Scramble String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great / gr eat / \ / g r e at / a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it
produces a scrambled string "rgeat"
.
rgeat / rg eat / \ / r g e at / a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
,
it produces a scrambled string "rgtae"
.
rgtae / rg tae / \ / r g ta e / t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
分析:动态规划,dp[i][j][k]表示s1[i~i+len]与s2[j~j+len]是否为Scramble String,即S1从i开始k个字符与S2从j开始k个字符是否为Scramble String。对于每一个分割点,分别判断左右两侧是否是Scramble String,如果有一个满足,则该子串就满足Scramble String,即
dp[i][j][len] = (dp[i][j][k] && dp[i+k][j+k][len-k]) || (dp[i][j+len-k][k] && dp[i+k][j][len-k]),当len==1时,dp[i][j][1] = s1[i] == s2[j].
class Solution { public: bool isScramble(string s1, string s2) { int length = s1.size(),i,j,k,len; if(length != s2.size())return false; vector< vector< vector<bool> > >dp(length); for (i = 0;i < length;++i) { vector< vector<bool> >tmp1(length); for (j = 0;j < length;j++) { vector<bool> tmp2(length+1,false); tmp1[j] = tmp2; } dp[i] = tmp1; } for (len = 1;len <= length;len++) { for (i = 0;i + len <= length;++i) { for (j = 0;j +len <= length;++j) { if (len == 1)dp[i][j][len] = (s1[i] == s2[j]); else { for (k = 1;k < len;k++) { if ((dp[i][j][k] && dp[i+k][j+k][len-k]) || (dp[i][j+len-k][k] && dp[i+k][j][len-k])) { dp[i][j][len] = true;//表示s1[i~i+len]与s2[j~j+len]是否为Scramble String break; } } } } } } return dp[0][0][length]; } };
标签:scramble string leetcode 动态规划
原文地址:http://blog.csdn.net/fangjian1204/article/details/39117801