标签:acm hdu
Mex
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 1892 Accepted Submission(s): 625
Problem Description
Mex is a function on a set of integers, which is universally used for impartial game theorem. For a non-negative integer set S, mex(S) is defined as the least non-negative integer which is not appeared in S. Now our problem is about mex function on a sequence.
Consider a sequence of non-negative integers {ai}, we define mex(L,R) as the least non-negative integer which is not appeared in the continuous subsequence from aL to aR, inclusive. Now we want to calculate the sum of mex(L,R) for all 1 <= L <= R <= n.
Input
The input contains at most 20 test cases.
For each test case, the first line contains one integer n, denoting the length of sequence.
The next line contains n non-integers separated by space, denoting the sequence.
(1 <= n <= 200000, 0 <= ai <= 10^9)
The input ends with n = 0.
Output
For each test case, output one line containing a integer denoting the answer.
Sample Input
Sample Output
题意:求所有区间mex的总和,定义mex[i,j]为区间[i,j]没有出现过的最小的数
思路:比较好的线段树题
先预处理出mex[1,i] (1=<i<=n)
然后预处理出每个位置 i 的下一个位置 next[i] ,假设现在位置的数为x,那么规定它的下一个位置为它后面离它最近的x的位置
然后 i 从1-n开始搞,每次删除i位置的数,然后在[ i+1,next[i]-1 ]这些位置找到满足位置p,且p位置的mex[i,p]值>value[i]
那么后面到next[i]-1的所有区间的mex都是大于value[i]的,因为mex满足单调性
然后就将mex[ p,next[i]-1 ]区间的值修改为value[i]
最后区间[i+1,n]求和就是以i+1为左端点,i+2~n为右端点的所有区间的mex和
涉及到的操作,区间更新,区间求和,区间求最大
hdu4747(线段树区间更新)
标签:acm hdu
原文地址:http://blog.csdn.net/cq_phqg/article/details/39110183