标签:style http color os io 使用 ar art div
首先看以下的图
对于图中的一系列样本点,当我们採用
在主要的线性回归
问题中,首先我们构造出预測函数h(x),然后变化參数θ使得误差函数最小化,一旦θ确定,以后不会改变,全部的预測值都会使用着一个參数:
相比之下,局部权重线性回归
方法运行例如以下的算法:
x代表须要预測的值的输入,
w中的τ
称为带宽(bandwidth)參数,能够控制x周围的概念,即控制距离x多远能够參与线性函数的预计,τ
越大,參与的点越多,反之,參与的点越少。
因为局部权重线性回归方法每个预測每个点时候都须要又一次计算一次
θ的值,因此,算法费时间复杂度会非常高,是一种non-parametric算法。前面的基本线性回归是一种parametric学习算法。
局部权重线性回归(Locally weighted linear regression)
标签:style http color os io 使用 ar art div
原文地址:http://www.cnblogs.com/mfrbuaa/p/3960470.html