码迷,mamicode.com
首页 > 其他好文 > 详细

[UVa 10673]Play with Floor and Ceil

时间:2017-09-08 14:51:14      阅读:124      评论:0      收藏:0      [点我收藏+]

标签:with   int   vector   min   algorithm   img   logs   scan   16px   

技术分享

题目大意

求不定方程 $$x = p \lfloor {x \over k} \rfloor + q \lceil {x \over k} \rceil$$ 的一组整数解,$x$,$k$给出。

题解

我们发现 $\lfloor {x \over k} \rfloor$ 和 $\lceil {x \over k} \rceil$ 只有两种情况:

1. 相差$1$,显然$gcd(\lfloor {x \over k} \rfloor,\lceil {x \over k} \rceil)=1$。显然有整数解。

2. 相等,则$k|x$,所以$gcd|x$,也有整数解。

用扩欧求出方程$$gcd(\lfloor {x \over k} \rfloor,\lceil {x \over k} \rceil) = p \lfloor {x \over k} \rfloor + q \lceil {x \over k} \rceil$$一组解,

最后将答案乘上$x \over gcd$即可。

 1 #include <set>
 2 #include <map>
 3 #include <ctime>
 4 #include <cmath>
 5 #include <queue>
 6 #include <stack>
 7 #include <vector>
 8 #include <cstdio>
 9 #include <string>
10 #include <cstring>
11 #include <cstdlib>
12 #include <iostream>
13 #include <algorithm>
14 #define LL long long
15 #define Max(a, b) ((a) > (b) ? (a) : (b))
16 #define Min(a, b) ((a) < (b) ? (a) : (b))
17 #define sqr(x) ((x)*(x))
18 using namespace std;
19 
20 LL t, x, k;
21 
22 LL exgcd(LL a, LL b, LL &x, LL &y) {
23     if (b == 0) {
24     x = 1, y = 0;
25     return a;
26     }
27     LL c = exgcd(b, a%b, x, y);
28     LL t = x;
29     x = y;
30     y = t-y*(a/b);
31     return c;
32 }
33 
34 int main() {
35     scanf("%lld", &t);
36     while (t--) {
37     scanf("%lld%lld", &x, &k);
38     LL p, q;
39     LL tmp = exgcd(x/k, x/k+(bool)(x%k), p, q);
40     printf("%lld %lld\n", p*x/tmp, q*x/tmp);
41     }
42     return 0;
43 }

 

[UVa 10673]Play with Floor and Ceil

标签:with   int   vector   min   algorithm   img   logs   scan   16px   

原文地址:http://www.cnblogs.com/NaVi-Awson/p/7494118.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!