码迷,mamicode.com
首页 > 其他好文 > 详细

bzoj4326 运输计划

时间:2017-09-10 21:47:49      阅读:190      评论:0      收藏:0      [点我收藏+]

标签:包括   ==   eof   编号   bzoj   tarjan   set   rip   正整数   

4326: NOIP2015 运输计划

Time Limit: 30 Sec  Memory Limit: 128 MB

Description

公元 2044 年,人类进入了宇宙纪元。L 国有 n 个星球,还有 n?1 条双向航道,每条航道建立在两个星球之间,这 n?1 条航道连通了 L 国的所有星球。小 P 掌管一家物流公司, 该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去。显然,飞船驶过一条航道是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之间不会产生任何干扰。为了鼓励科技创新, L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小P 把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。在虫洞的建设完成前小 P 的物流公司就预接了 m 个运输计划。在虫洞建设完成后,这 m 个运输计划会同时开始,所有飞船一起出发。当这 m 个运输计划都完成时,小 P 的物流公司的阶段性工作就完成了。如果小 P 可以自由选择将哪一条航道改造成虫洞, 试求出小 P 的物流公司完成阶段性工作所需要的最短时间是多少?

 

Input

第一行包括两个正整数 n,m,表示 L 国中星球的数量及小 P 公司预接的运输计划的数量,星球从 1 到 n 编号。接下来 n?1 行描述航道的建设情况,其中第 i 行包含三个整数 ai,bi 和 ti,表示第 i 条双向航道修建在 ai 与 bi 两个星球之间,任意飞船驶过它所花费的时间为 ti。数据保证 1≤ai,bi≤n 且 0≤ti≤1000。接下来 m 行描述运输计划的情况,其中第 j 行包含两个正整数 uj 和 vj,表示第 j 个运输计划是从 uj 号星球飞往 vj号星球。数据保证 1≤ui,vi≤n

 

Output

输出文件只包含一个整数,表示小 P 的物流公司完成阶段性工作所需要的最短时间。

 

Sample Input

6 3
1 2 3
1 6 4
3 1 7
4 3 6
3 5 5
3 6
2 5
4 5

Sample Output

11

HINT

 


将第 1 条航道改造成虫洞: 则三个计划耗时分别为:11,12,11,故需要花费的时间为 12。

将第 2 条航道改造成虫洞: 则三个计划耗时分别为:7,15,11,故需要花费的时间为 15。

将第 3 条航道改造成虫洞: 则三个计划耗时分别为:4,8,11,故需要花费的时间为 11。

将第 4 条航道改造成虫洞: 则三个计划耗时分别为:11,15,5,故需要花费的时间为 15。

将第 5 条航道改造成虫洞: 则三个计划耗时分别为:11,10,6,故需要花费的时间为 11。

故将第 3 条或第 5 条航道改造成虫洞均可使得完成阶段性工作的耗时最短,需要花费的时间为 11。
 
 

Tips:

  本题还是比较坑的,代码写的弱一点会超时;

  此题可以看出是具有二分性质的;

  但是二分的判断做到O(n)或O(m)看起来会很难;

  由于这是一棵树,我们需要知道两点间的距离可以用tarjan求lca求出距离;

  对于每个二分的答案x;

  显然<=x的距离是可以不用管它的;

  将>=x的距离的边数记下来;

  将>=x的距离的边的起点终点加一,lca减2;(差分思想自寻百度,我也讲不清);

  dfs一遍,找到 经过边数=记下来的边数  的边,取边权最大值的;

  判断最大距离-取边权最大值是否小于等于x即可;

 

Code:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#define MAXN 600008
using namespace std;
int n,m,head[MAXN],next[MAXN],vet[MAXN],len[MAXN],dis[MAXN],ance[MAXN];
int head1[MAXN],next1[MAXN],vet1[MAXN],hh[MAXN],ans[MAXN];
int color[MAXN],fa[MAXN],tot,tot1,l,r,res,ff[MAXN],tmp[MAXN];

int find(int x){
    if(fa[x]==x) return x;
    else return fa[x]=find(fa[x]);
}

void add1(int x,int y){
    tot1++;
    hh[tot1]=x;
    next1[tot1]=head1[x];
    head1[x]=tot1;
    vet1[tot1]=y;
}

void add(int x,int y,int z){
    tot++;
    next[tot]=head[x];
    head[x]=tot;
    vet[tot]=y;
    len[tot]=z;
}

void tarjan(int u){
    color[u]=1;
    for(int i=head[u];i!=0;i=next[i]){
        int y=vet[i];
        if(!color[y]){
            dis[y]=dis[u]+len[i];
            tarjan(y);
            fa[y]=u;
        }
    }
    for(int i=head1[u];i!=0;i=next1[i]){
        int y=vet1[i];
        if(color[y]){
            ance[(i+1)/2]=find(y);
            ans[(i+1)/2]=dis[u]+dis[y]-2*dis[ance[(i+1)/2]];
            r=max(ans[(i+1)/2],r);
        }
    }
}

void dfs(int u){
    color[u]=1;
    for(int i=head[u];i!=0;i=next[i]){
        int y=vet[i];
        if(!color[y]){
            ff[y]=len[i];
            dfs(y);
            tmp[u]+=tmp[y];
        }
    }
}

bool check(int flag){
    int ma=0,sum=0,g=0;
    memset(color,0,sizeof(color));
    memset(tmp,0,sizeof(tmp));
    for(int i=1;i<=m;i++){
        if(ans[i]>flag){
            tmp[hh[i*2]]++;
            tmp[vet1[i*2]]++;
            tmp[ance[i]]-=2;
            ma=max(ans[i],ma);
            sum++;
        }
    }
    dfs(1);
    for(int i=1;i<=n;i++){
        if(tmp[i]==sum){
            g=max(g,ff[i]);
        }
    }
    return (ma-g)<=flag;
}

void init(){
    tot=tot1=0; r=0;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        fa[i]=i;
    }
    for(int i=1;i<n;i++){
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
        add(y,x,z);
    }
    for(int i=1;i<=m;i++){
        int x,y;
        scanf("%d%d",&x,&y);
        add1(x,y);
        add1(y,x);
    }
}

void solve(){
    tarjan(1);
    l=0; res=r;
    while(l<=r){
        int mid=(l+r) >> 1;
        if(check(mid)){
            res=mid;
            r=mid-1;
        }else{
            l=mid+1;
        }
    }
}

void print(){
    printf("%d",res);
}

int main(){
    init();
    solve();
    print();
}

 

bzoj4326 运输计划

标签:包括   ==   eof   编号   bzoj   tarjan   set   rip   正整数   

原文地址:http://www.cnblogs.com/WQHui/p/7502183.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!