标签:split src gre code 学习 details file tar 没有
今天晚上突然脑子不知怎么的,本来正在人工给12306验证码做打标工作,突然想看看双色球每期的开奖结果是否有规律
从这里下载从03年到今年的每期双色球开奖结果
用t-SNE降维到3维打印出来看看
似乎并没有什么规律
准备用线性回归来拟合一个模型,马上就有一个问题,对于双色球预测,自变量取什么?这是个非常复杂的问题了,而且可能是无解的问题,因为如果双色球是完全的独立随机事件,那也就无法提取出自变量,自然也就没法提取特征空间,这里姑且用开奖期号作为自变量特征,用结果(6维的红球结果,1维的蓝球结果)作为label
# -*- coding: utf-8 -*- import os import numpy as np import matplotlib.pyplot as plt import pickle from sklearn.manifold import TSNE from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score def load_historydata(): if not os.path.isfile("ssq.pkl"): ori_data = np.loadtxt(‘ssq.TXT‘, delimiter=‘ ‘, usecols=(0, 2, 3, 4, 5, 6, 7, 8), unpack=False) pickle.dump(ori_data, open("ssq.pkl", "w")) return ori_data else: ori_data = pickle.load(open("ssq.pkl", "r")) return ori_data def load_tsnedata(ori_data): if not os.path.isfile("ssq_tsne.pkl"): tsne = TSNE(n_components=3, random_state=0) tsne_data = tsne.fit_transform(ori_data) pickle.dump(tsne_data, open("ssq_tsne.pkl", "w")) return tsne_data else: tsne_data = pickle.load(open("ssq_tsne.pkl", "r")) return tsne_data def show_oridata(show_date): fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, elev=-150, azim=110) ax.scatter(show_date[:, 0], show_date[:, 1], show_date[:, 2], edgecolor=‘k‘, s=40) plt.show() if __name__ == ‘__main__‘: ori_data = load_historydata() np.random.shuffle(ori_data) # tsne_data = load_tsnedata(ori_data) # show_oridata(tsne_data) X_data = ori_data[:, 0].reshape(-1, 1) Y_data = ori_data[:, 1:] print "X_data[0]: ", X_data[0] print "Y_data[0]: ", Y_data[0] # Split the data into training/testing sets split_len = int(len(X_data) * 0.8) X_train = X_data[:split_len] X_test = X_data[split_len:] print "X_train" print X_train # Split the targets into training/testing sets y_train = Y_data[:split_len] y_test = Y_data[split_len:] print "y_train" print y_train # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(X_train, y_train) # Make predictions using the testing set #y_pred = regr.predict(X_train).round() y_pred = regr.predict(X_test).round() print "y_pred" print y_pred print "y_pred distinct" y_pred_cache = list() for line in y_pred: line = list(line) if line not in y_pred_cache: y_pred_cache.append(line) for line in y_pred_cache: print line # 预测的准确度 print "Prediction accurate: {0}%".format(np.mean(X_test == y_pred) * 100)
线性回归的预测结果如下
y_pred distinct [5.0, 9.0, 14.0, 19.0, 24.0, 29.0, 9.0] [5.0, 10.0, 15.0, 19.0, 24.0, 29.0, 9.0] [5.0, 10.0, 14.0, 19.0, 24.0, 29.0, 9.0]
模型对所有的training set的每一条预测结果都相同,这说明,对于开奖期号来说,开奖结果是一个完全随机的事件
如果考虑每期和每期之间可能有关联性,可以考虑试试用RNN来训练,输入依然是开奖期号
但是反过来也给了我一个启示,在进行机器学习项目的时候,如果train或者test的结果不好或者不符合预期,不要急于去调参数或者换模型,更应该回过头来想想自己给模型输入的特征是否确实隐含了规律,算法是无法对随机事件进行预测的,只有原始数据中确实隐含了规律,使用适当的模型才能从中抽象出模型,特征工程是非常关键的,也是需要长久思考的
Relevant Link:
https://datachart.500.com/ssq/history/history.shtml http://blog.csdn.net/supperman_009/article/details/40623503 https://zhuanlan.zhihu.com/p/26341086 http://ssq.50018.com/zou-shi-tu/default.aspx http://www.sohu.com/a/134552307_116235
标签:split src gre code 学习 details file tar 没有
原文地址:http://www.cnblogs.com/LittleHann/p/7518410.html