标签:names lan text .com ext ima 关于 oss cst
先上干货:
定理1:
如果d = gcd(a,b),则必能找到正的或负的整数k和l,使ax + by = d.
(参考exgcd:http://www.cnblogs.com/dilthey/p/6804137.html)
定理2:
一元线性同余方程ax ≡ n (mod b) 有解,当且仅当gcd(a,b)|n.
也就是说,解出了ax+by=gcd(a,b),就相当于解出了ax≡n(mod b) (而且只要满足gcd(a,b)|n,就一定有解)
定理3:
若gcd(a,b) = 1,则方程ax ≡ n (mod b)在[0, b-1]上有唯一解.
由上可知ax ≡ n (mod b) 即方程 ax + by = n,由定理1可知必然存在x,y满足 ax + by = gcd(a,b) = 1,则必然存在nx,ny满足 ax + by = n
则必然ax ≡ n (mod b)有解nx,由于nx+kb都是该方程的解,则在[0, b-1]上必然出现一个解。
再证唯一性:
唯一满足mod b = 0的条件的,只有x1 = x2
定理4:
若gcd(a, b) = d,则方程ax ≡ n (mod b)在[0, b/d - 1]上有唯一解.
这样,如果我有一个方程ax ≡ n (mod b)的任意解X,那么我先X mod (b/d),使得其在范围[-b/d+1,b/d-1]范围内,
再加上b/d就使其在范围[1,2(b/d)-1]范围内,再mod (b/d)就可以使其处在[0,b/d -1]范围内了。
即在[0,b/d-1]范围内的解x=[ X mod (b/d) + (b/d) ] mod (b/d).
分割线
然后正式关于题目:
题目链接:http://poj.org/problem?id=1061
题解:
青蛙A:a = ( x + mt ) mod L
青蛙B:b = ( y + nt ) mod L
现在要使得a=b,即( x + mt ) = ( y + nt ) (mod L),即( x - y ) + ( m - n ) t = kL;
即求最小的正整数t满足 ( m - n ) t + KL = y - x (K=-k),即求一元线性同余方程( m - n ) x ≡ ( y - x ) (mod L) 的解;
那么就像上面那样,先算( m - n ) * x + L * K = gcd( m - n , L ),得到一个x的值;
然后判断( y - x ) mod gcd( m - n , L ) == 0 ?,若能整除,则有解;
然后就只要先把x *= ( y - x ) / gcd( m - n , L ) ,再根据上面求出解集中的最小正整数即为答案;
PS.当然,最后一步求[0,b/d-1]范围内的唯一解时,由于要mod (b/d),我们要保证b/d为正,在本题中,即保证L/d为正,故d要为正。
AC代码:
1 #include<cstdio> 2 #include<algorithm> 3 typedef long long ll; 4 using namespace std; 5 ll x,y,m,n,L; 6 ll d,ans,K; 7 void exgcd(ll a,ll b,ll &d,ll &x,ll &y){ 8 if(!b){d=a;x=1;y=0;} 9 else {exgcd(b,a%b,d,y,x);y-=(a/b)*x;} 10 } 11 int main() 12 { 13 scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&L); 14 if(m<n) 15 { 16 swap(m,n); 17 swap(x,y); 18 } 19 exgcd(m-n,L,d,ans,K); 20 if(d==0 || (x-y)%d!=0) printf("Impossible\n"); 21 else 22 { 23 ans*=(y-x)/d; 24 ans=(ans%(L/d)+(L/d))%(L/d); 25 printf("%I64d\n",ans); 26 } 27 }
PS.曾经刚开始搞ACM的时候,就因为这题是POJ第一页上为数不多的中文题而钻了很久,不过以当时的实力,想想就知道怎么磕都磕不出来的,今天总算把这道题给补上了,感觉还是不错的
POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]
标签:names lan text .com ext ima 关于 oss cst
原文地址:http://www.cnblogs.com/dilthey/p/7529257.html