Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { int rows = triangle.size();//该三角形的行和最大列是相等的,所用的空间复杂度即O(rows) if(rows <= 0)return 0; vector<int> dp(rows,0); dp[0] = triangle[0][0]; int i,j; for (i = 1;i < rows;i++) { for (j = triangle[i].size() - 1;j >= 0;--j) { if(j == 0)dp[j] = dp[j] + triangle[i][j];//第一列元素 else if(j == triangle[i].size()-1) dp[j] = dp[j-1] + triangle[i][j];//最后一列元素 else dp[j] = min(dp[j-1],dp[j]) + triangle[i][j];//中间的元素。 } } int res = dp[0]; for(i = 1;i < rows;i++) { if(dp[i] < res)res = dp[i]; } return res; } };
原文地址:http://blog.csdn.net/fangjian1204/article/details/39136623