码迷,mamicode.com
首页 > 其他好文 > 详细

Hive之 数据存储

时间:2017-09-18 20:34:11      阅读:130      评论:0      收藏:0      [点我收藏+]

标签:目录   语句   art   元数据   存储   如何   有一个   creat   hash   

首先,Hive 没有专门的数据存储格式,也没有为数据建立索引,用户可以非常自由的组织 Hive 中的表,只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据。

     其次,Hive 中所有的数据都存储在 HDFS 中,Hive 中包含以下数据模型:Table,External Table,Partition,Bucket。

 

    1)表table:一个表就是hdfs中的一个目录

    2)区Partition:表内的一个区就是表的目录下的一个子目录

    3)桶Bucket:如果有分区,那么桶就是区下的一个单位,如果表内没有区,那么桶直接就是表下的单位,桶一般是文件的形式。

  1. Hive 中的 Table 和数据库中的 Table 在概念上是类似的,每一个 Table 在 Hive 中都有一个相应的目录存储数据。例如,一个表 pvs,它在 HDFS 中的路径为:/wh/pvs,其中,wh 是在 hive-site.xml 中由 ${hive.metastore.warehouse.dir} 指定的数据仓库的目录,所有的 Table 数据(不包括 External Table)都保存在这个目录中。
  2. Partition 对应于数据库中的 Partition 列的密集索引,但是 Hive 中 Partition 的组织方式和数据库中的很不相同。在 Hive 中,表中的一个 Partition 对应于表下的一个目录,所有的 Partition 的数据都存储在对应的目录中。例如:pvs 表中包含 ds 和 city 两个 Partition,则对应于 ds = 20090801, ctry = US 的 HDFS 子目录为:/wh/pvs/ds=20090801/ctry=US;对应于 ds = 20090801, ctry = CA 的 HDFS 子目录为;/wh/pvs/ds=20090801/ctry=CA。表是否分区,如何添加分区,都可以通过Hive-QL语言完成。通过分区,即目录的存放形式,Hive可以比较容易地完成对分区条件的查询。
  3. Buckets 对指定列计算 hash,根据 hash 值切分数据,目的是为了并行,每一个 Bucket 对应一个文件。将 user 列分散至 32 个 bucket,首先对 user 列的值计算 hash,对应 hash 值为 0 的 HDFS 目录为:/wh/pvs/ds=20090801/ctry=US/part-00000;hash 值为 20 的 HDFS 目录为:/wh/pvs/ds=20090801/ctry=US/part-00020 。桶是Hive的最终的存储形式。在创建表时,用户可以对桶和列进行详细地描述。
  4. External Table 指向已经在 HDFS 中存在的数据,可以创建 Partition。它和 Table 在元数据的组织上是相同的,而实际数据的存储则有较大的差异。
  • Table 的创建过程和数据加载过程(这两个过程可以在同一个语句中完成),在加载数据的过程中,实际数据会被移动到数据仓库目录中;之后对数据对访问将会直接在数据仓库目录中完成。删除表时,表中的数据和元数据将会被同时删除。
  • External Table 只有一个过程,加载数据和创建表同时完成(CREATE EXTERNAL TABLE ……LOCATION),实际数据是存储在 LOCATION 后面指定的 HDFS 路径中,并不会移动到数据仓库目录中。当删除一个 External Table 时,仅删除

Hive之 数据存储

标签:目录   语句   art   元数据   存储   如何   有一个   creat   hash   

原文地址:http://www.cnblogs.com/andy6/p/7544758.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!