码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习(西瓜书)模型评估与选择

时间:2017-09-19 11:01:12      阅读:134      评论:0      收藏:0      [点我收藏+]

标签:模型训练   计算   参数   允许   数据   比较   可靠   输入参数   采样   

1、评估标准

  1)经验误差 :训练集上产生的误差

  2)泛化误差:对新样本进行预测产生的误差

  3)过拟合:经验误差很小甚至为零,泛化误差很大(模型训练的很复杂,几乎涵盖了训练集中所有的样本点)

  4)欠拟合:与过拟合相反

  一般模型的泛化误差越小越好

2、评估方法

  1)留出法:采用分层采样的方式留出验证集

  2)交叉验证法:将数据集均分k份,留出一份作为交叉验证集,重复k次取均值

  3)自助法:随机可重复采样m次,所得集合作为训练集,余下数据作为验证集

  在数据集较小时,自助法比较可靠 在数据集较大时,留出法和交叉验证法更常用一些

3、调参与最终模型

  1)调参:调整模型输入参数,使得结果接近最佳,如果计算资源允许,可通过枚举方式进行

  2)在模型选择完成后,学习算法和参数配置已选定,此时应该用数据集D重新训练模型

 

机器学习(西瓜书)模型评估与选择

标签:模型训练   计算   参数   允许   数据   比较   可靠   输入参数   采样   

原文地址:http://www.cnblogs.com/acm-jing/p/7549905.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!