标签:sar other 访问 condition 隐式 文件 return upd 相关
内存优化表(Memory-Optimized Table,简称MOT)使用乐观策略(optimistic approach)实现事务的并发控制,在读取MOT时,使用多行版本化(Multi-Row versioning)创建数据快照,读操作不会对数据加锁,因此,读写操作不会相互阻塞。写操作会申请行级锁,如果两个事务尝试更新同一数据行,SQL Server检测到写-写冲突,产生错误(Error 41302),将后后创建的事务作为失败者,回滚事务的操作。虽然MOT事务使用无锁结构(Lock-Free),不会产生阻塞,但是,访问MOT仍然会产生Wait,通常情况下,等待时间是非常短暂的。
一,MOT使用乐观并发事务控制
1,并发控制策略
事务的并发控制策略分为乐观策略和悲观策略,SQL Server支持两种并发策略。
1.1,悲观策略(Pessimistic Approach)
悲观策略认为每一个数据更新都潜在地存在冲突,为了避免数据争用,事务在读取数据时申请共享锁,在更新数据时对数据加互斥锁(Locking)。在冲突发生时,通过加锁阻塞其他事务;其他事务检测到冲突后,等待拥有资源的事务释放互斥锁,其他事务只有获取到资源上的加锁,才能执行读写操作。
悲观策略主要用于数据争用激烈,并且发生发冲突时用锁保护数据的成本低于回滚事务的成本的环境中。
1.2,乐观策略(Optimistic Approach)
乐观策略认为执行的数据更新操作很少存在冲突,事务在读取数据时,不锁定数据;在更新数据时,事务只在提交时检查更新的有效性,如果有其他事务更新该数据,将产生更新冲突的错误,那么事务不等待,SQL Server选择一个事务作为失败者,并回滚事务执行的操作。乐观策略效率更高,部分原因是在大多数情况下,更新冲突不经常发生。当冲突发生时,使用悲观策略,事务需要等待;使用乐观策略,SQL Server使事务失败,回滚事务操作。
乐观策略主要用于数据争用不大,并且偶尔回滚事务的成本低于读取数据时锁定数据的成本的环境中。
乐观估计效率更高,部分原因是在大多数情况下,事务冲突不经常发生。当冲突发生时,使用悲观估计法,事务需要等待;使用乐观估计法,SQL Server使事务失败,并回滚事务操作,因此,在发生更新冲突时,需要在客户端进行异常检测,重新执行事务。
2,MOT使用乐观并发控制(Optimistic Concurrency Control,简称OCC)
乐观策略使用行版本化(row versioning)实现并发控制,对于disk-based table,使用tempdb存储行版本数据;对于MOT,在内存中存储行版本数据。
乐观策略认为冲突和失败是不常见的,OCC认为访问MOT的事务不会和其他并发执行的事务产生冲突,任何操作都会执行成功。在访问MOT时,事务不会加锁(Lock或Latch)以保证读操作的隔离性,因此,读写操作互不阻塞,也不会产生等待。一旦产生写-写冲突,SQL Server将选择创建时间晚的事务作为失败者,并回滚该事务操作。
二,MOT支持的事务隔离级别(Transaction Isolation Level)
在In-Memory OLTP系统中,存在两种事务隔离级别,访问硬盘表(Disk-Based Table,简称DBT)的事务,和访问MOT的事务;和传统的事务隔离级别不同,在一个事务中,存在两个隔离级别。
1,MOT的SNAPSHOT隔离级别
实际上,访问MOT,事务必须处在SNAPSHOT隔离级别下,SNAPSHOT隔离级别指定在读操作执行时,数据在事务级别保持一致性,这意味着,在一个事务中的任何读操作,读取的数据是事务一致性的数据版本。事务一致性是指在事务开始时,创建数据快照:在事务开始时,已经提交的事务更新,能够被该事务识别;在事务开始之后,被其他事务提交的数据更新操作,不会被当前事务识别。
This isolation level specifies that data read by any statement in a transaction will be the transactionally consistent version of the data that existed at the start of the transaction. The transaction can only recognize data modifications that were committed before the start of the transaction. Data modifications made by other transactions after the start of the current transaction are not visible to statements executing in the current transaction. The statements in a transaction get a snapshot of the committed data as it existed at the start of the transaction.
在SQL Server 2016中,有两种方式指定隔离级别:当在解释性TSQL中访问MOT时,使用Table Hint指定SNAPSHOT隔离级别;当在Natively Compiled 存储过程中访问MOT时,必须在Atomic Block中指定隔离级别为SNAPSHOT。
SNAPSHOT隔离级别只会影响读操作,而写操作不受隔离级别的影响,和其他事务完全隔离,因此,在Snapshot隔离级别下,当并发事务尝试去更新同一行数据时,并发事务产生更新冲突,抛出错误 41302,41325,或41305,SQL Server选择一个开始时间晚的事务作为失败者,并回滚其操作,产生的Error是:
2,提升事务的隔离级别
在显式事务(Explicit)模式中,如果默认的事务隔离级别低于SNAPSHOT,那么必须提升事务隔离级别,才能访问MOT,有两种实现方式:
ALTER DATABASE CURRENT SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT=ON
因此,在显式事务中,通过解释性(Interpreted)TSQL访问MOT时,必须:
如果发生MSSQLSERVER_41333 错误,说明产生交叉事务隔离错误(CROSS_CONTAINER_ISOLATION_FAILURE),原因是当前事务的隔离级别太高,解决方法是:将Session-Level的事务隔离级别降低到Read Committed。
3,事务初始化模式(Transaction Initiation Modes)
SET IMPLICIT_TRANSACTION ON
三,访问MOT的事务隔离级别
在访问MOT时,最方便的做法是:使用默认的隔离级别 Read Committed,并且设置数据库选项:MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT 为ON。
1, 如果设置Session的隔离级别为Read Uncommitted,事务访问MOT,将产生错误,MOT不支持Read Uncommitted隔离级别
The transaction isolation level ‘READ UNCOMMITTED‘ is not supported with memory optimized tables.
2,如果设置Session的隔离级别为Read Committed:
在显式事务中,访问MOT,将产生错误:
Accessing memory optimized tables using the READ COMMITTED isolation level is supported only for autocommit transactions. It is not supported for explicit or implicit transactions. Provide a supported isolation level for the memory optimized table using a table hint, such as WITH (SNAPSHOT).
要想在显式事务或隐式事务模式下访问MOT,有两种方式:
ALTER DATABASE CURRENT SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT=ON
3,如果设置Session的隔离级别为Snapshot,无法访问MOT
alter database current set allow_snapshot_isolation on set transaction isolation level snapshot
访问MOT,将产生错误,MOT 和 Natively Compiled模块在Session的事务隔离为Snapshot时无法访问或创建:
Memory optimized tables and natively compiled modules cannot be accessed or created when the session TRANSACTION ISOLATION LEVEL is set to SNAPSHOT.
4,如果设置Session的隔离级别为Repeatable Read or Serializable时,访问MOT必须使用snapshot隔离级别;
如果Session的隔离级别是Repeatable Read 或 Serializable,那么访问MOT必须使用Table Hint:with(snapshot),在snapshot隔离级别下访问MOT:
The following transactions must access memory optimized tables and natively compiled modules under snapshot isolation: RepeatableRead transactions, Serializable transactions, and transactions that access tables that are not memory optimized in RepeatableRead or Serializable isolation.
综上所述,访问MOT时,需要设置兼容的事务隔离级别:
四,行版本(Row Version)
对硬盘表(Disk-Based Table,简称DBT),Snapshot隔离级别将行版本化的数据存储在tempdb中;在其他隔离级别(例如,Read Committed,Repeatable,Serializable)下,事务通过加锁避免冲突。对于MOT,事务不会加锁,MOT使用多行版本实现事务的并发控制,和Disk-Based Table不同的是,MOT的版本化数据存储在MOT的内存数据结构中,而不是存储在tempdb中。MOT的每一个数据行在内存中可能存在多个版本,每一个版本都保存在相同的数据结构中。实际上,MOT的数据结构是Row Version的集合,相同Row的不同Version不需要存储在连续的内存地址中,每一个Row Version是分散地存储在MOT中,每一个Row Version使用8B的内存地址来寻址。
The table has three rows: r1, r2, and r3. r1 has three versions, r2 has two versions, and r3 has four versions. Note that different versions of the same row do not necessarily occupy consecutive memory locations. The different row versions can be dispersed throughout the table data structure.
1,MOT的多版本(Multi-Versioning)
MOT的同一行数据可以有不同的版本,因此,并发执行事务可能访问同一行数据的不同版本,由于在同一时刻,任何数据行都有可能拥有不同行版本,并且都是有效的;如果根据数据行的不同版本执行数据更新操作,有可能产生逻辑错误。MOT维护的多行版本(Row-Version)不是存储在tempdb中,而是直接存储在MOT中,作为MOT数据结构的一部分存储在内存中。
2,使用行版本实现Snapshot事务隔离
在单个事务中,访问MOT的所有操作,都使用在事务上一致的快照(Transactionally-Consistent),所谓事务一致性是指在一个事务开始时,创建MOT的数据快照,在该事务活跃期间,事务的所有操作都是基于该数据行快照。如果其他事务修改数据,不会影响该事务读取的数据,例如其他事务将数据由3更新成4,在当前事务中,读操作读到的数据仍然是3;如果在当前事务中尝试修改已被其他事务修改的数据,将产生更新冲突。
访问MOT的事务使用行版本化(row versioning)获得一个事务一致性的数据快照(snapshot),在单个事务中,任何数据操作读取的数据是:
五,MOT的事务处理
1,交叉事务(cross-container transaction)
交叉事务是指在一个事务中,解释性TSQL语句同时访问MOT和DBT。在交叉事务中,访问MOT的操作和访问DBT(Disk-Based Table)的操作都拥有自己独立的事务序号,就像在一个大的交叉事务下,存在两个单独的子事务,分别用于访问MOT和DBT;在sys.dm_db_xtp_transactions (Transact-SQL)中,访问DBT的事务使用transaction_id标识,访问MOT的事务序号使用xtp_transaction_id标识。
2,访问MOT的事务生命周期
当事务涉及到MOT时,处理事务的生命周期(lifetime)分为三个phase:常规处理,验证阶段,提交处理,如图:
Phase1:常规处理阶段,事务所有的查询和更新操作都在这个阶段执行:
Phase2:验证阶段,从该阶段开始时,在逻辑上事务已经完成,只是没有提交,其他事务能够看到当前事务更新之后的数据值;
Phase3:事务提交处理阶段,事务日志记录到日志文件,事务提交完成,一旦日志写入到Disk,控制权返回到客户端
3,等待(Waiting)
访问MOT使用乐观多版本并发控制,不需要加锁,不会产生阻塞,但是,仍然会产生等待(Waiting),但是,永远不可能等待Lock释放,而是等待:
在执行数据更新操作,需要等待事务日志持久化写入到Disk,虽然等待持续的时间通常非常短暂,但是,可以通过以下两个方式来避免:
六,冲突检测和重试逻辑(Conflict Detection and Retry Logic)
1,冲突检测
跟事务相关的错误有两类,这两类错误都会导致事务失败和回滚。大多数情况下,任意一个错误发生,都需要重新执行事务:
2,重试逻辑(Retry Logic)
如果事务失败是由于上述两种情况,那么这个事务应该重新执行,重试逻辑可以实现在Client或Server端,通常推荐在Client实现重试逻辑,因为在Client端执行重试逻辑更高效,并能对事务失败的异常进行复杂处理。
在Server端执行重试逻辑,仅用于在事务失败时,不向Client返回任何结果集,重试逻辑的示例代码如下:
七,事务的懒提交(Lazy Commit)
在SQL Server中,事务提交可以是完全持久化的(Full Durable,默认),也可以是延迟持久化的(Delayed Durable),也叫做Lazy Commit。
完全持久化(Full Durable)事务是指:只有当事务日志记录写入到Disk上的事务日志文件(.ldf)之后,事务才提交成功,并将控制权返回到客户端(Client);而延迟持久化(Delayed Durable)事务是指:写事务日志的操作是异步,事务在事务日志写入Disk之前,提交成功,就是说,一旦查询语句执行成功,事务就提交成功,并将控制权返回到Client,但是数据更新可能并没有记录到事务日志文件(.ldf)中,直到事务更新的日志被持久化记录到Disk上的事务日志文件之后,数据更新才变成持久,存储数据更新丢失的可能性。
懒提交事务持久化使用异步写模式,将事务日志异步地写入到事务日志文件(.ldf)中。在异步写日志模式下,SQL Server把产生的事务日志先保存在缓存中,直到填满缓存空间,或发生缓存刷新事件,事务日志才被写入到事务日志文件(.ldf)中。懒提交之所以能够减少IO操作的延迟和竞争,是因为有以下三点优势:
在SQL Server 2016中,有以下三种方式使用懒提交模式:
1,将数据库设置为懒提交模式
ALTER DATABASE DatabaseName SET DELAYED_DURABILITY = { DISABLED | ALLOWED | FORCED }
2,在Natively Compiled SP中,将Atomic Block设置为懒提交
CREATE PROCEDURE <procedureName> … WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER AS BEGIN ATOMIC WITH ( DELAYED_DURABILITY = ON, TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N‘English‘ … ) END
3,在Commit子句中,指定懒提交选项
COMMIT [ { TRAN | TRANSACTION } ] [ transaction_name ] ] [ WITH ( DELAYED_DURABILITY = { OFF | ON } ) ]
参考文档:
Transactions in Memory-Optimized Tables
Introduction to Memory-Optimized Tables
Transactions with Memory-Optimized Tables
Control Transaction Durability
标签:sar other 访问 condition 隐式 文件 return upd 相关
原文地址:http://www.cnblogs.com/wangsicongde/p/7551076.html