码迷,mamicode.com
首页 > 其他好文 > 详细

Hive

时间:2017-09-20 21:54:32      阅读:175      评论:0      收藏:0      [点我收藏+]

标签:lib   包括   grant   过程   err   生成   服务   grep   man   

Hive简介

 

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。

 

1.1.1 什么使用Hive

 

  • 直接使用hadoop所面临的问题

 

人员学习成本太高

 

项目周期要求太短

 

MapReduce实现复杂查询逻辑开发难度太大

 

 

 

  • 为什么要使用Hive

 

操作接口采用类SQL语法,提供快速开发的能力。

 

避免了去写MapReduce,减少开发人员的学习成本。

 

扩展功能很方便。

 

1.1.1 Hive的特点

  • 可扩展

Hive可以自由的扩展集群的规模,一般情况下不需要重启服务。

  • 延展性

Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。

  • 容错

良好的容错性,节点出现问题SQL仍可完成执行。

 

Hive架构

技术分享

Jobtracker是hadoop1.x中的组件,它的功能相当于: Resourcemanager+AppMaster

 TaskTracker 相当于:  Nodemanager  +  yarnchild

 

 基本组成

  • 用户接口包括 CLI、JDBC/ODBC、WebGUI。
  • 元数据存储通常是存储在关系数据库如 mysql , derby
  • 解释器、编译器、优化器、执行器

 

 各组件的基本功能

  • 用户接口主要由三个:CLI、JDBC/ODBC和WebGUI。其中,CLIshell命令行;JDBC/ODBCHiveJAVA实现,与传统数据库JDBC类似;WebGUI是通过浏览器访问Hive
  • 元数据存储:Hive 将元数据存储在数据库中。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等
  • 解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行

HiveHadoop关系 

Hive利用HDFS存储数据,利用MapReduce查询数据

 技术分享

 

 Hive与传统数据库对比

技术分享

  1. 查询语言。由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计了类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开发。
  2. 数据存储位置。Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中的。而数据库则可以将数据保存在块设备或者本地文件系统中。
  3. 数据格式。Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、”\t”、”\x001″)、行分隔符(”\n”)以及读取文件数据的方法(Hive 中默认有三个文件格式 TextFile,SequenceFile 以及 RCFile)。由于在加载数据的过程中,不需要从用户数据格式到 Hive 定义的数据格式的转换,因此,Hive 在加载的过程中不会对数据本身进行任何修改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。
  4. 数据更新。由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive 中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO ...  VALUES 添加数据,使用 UPDATE ... SET 修改数据。
  5. 索引。之前已经说过,Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些 Key 建立索引。Hive 要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapReduce 的引入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。
  6. 执行。Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的,而数据库通常有自己的执行引擎。

总结hive具有sql数据库的外表但应用场景完全不同hive只适合用来做批量数据统计分析

 

 Hive的数据存储

1Hive中所有的数据都存储在 HDFS 没有专门的数据存储格式(可支持TextSequenceFileParquetFileRCFILE等)

2只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据。

3Hive 中包含以下数据模型:DBTableExternal TablePartitionBucket

² db:在hdfs中表现为${hive.metastore.warehouse.dir}目录下一个文件夹

² table:在hdfs中表现所属db目录下一个文件夹

² external table外部表, table类似,不过其数据存放位置可以在任意指定路径

普通表: 删除表后, hdfs上的文件都删了

External外部表删除后, hdfs上的文件没有删除, 只是把文件删除了

² partition:在hdfs中表现为table目录下的子目录

² bucket, hdfs中表现为同一个表目录下根据hash散列之后的多个文件, 会根据不同的文件把数据放到不同的文件中 

 

HIVE的安装部署

安装

单机版:

元数据库mysql版:

 Hive只在一个节点上安装即可

1.上传tar包

2.解压
tar -zxvf hive-0.9.0.tar.gz -C /cloud/
3.安装mysql数据库(切换到root用户)(装在哪里没有限制,只有能联通hadoop集群的节点)
mysql安装仅供参考,不同版本mysql有各自的安装流程
rpm -qa | grep mysql
rpm -e mysql-libs-5.1.66-2.el6_3.i686 --nodeps
rpm -ivh MySQL-server-5.1.73-1.glibc23.i386.rpm
rpm -ivh MySQL-client-5.1.73-1.glibc23.i386.rpm
修改mysql的密码
/usr/bin/mysql_secure_installation
(注意:删除匿名用户,允许用户远程连接)
登陆mysql
mysql -u root -p

4.配置hive
(a)配置HIVE_HOME环境变量 vi conf/hive-env.sh 配置其中的$hadoop_home

(b)配置元数据库信息 vi hive-site.xml
添加如下内容:

<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true</value>
<description>JDBC connect string for a JDBC metastore</description>
</property>

<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>

<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
<description>username to use against metastore database</description>
</property>

<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>root</value>
<description>password to use against metastore database</description>
</property>
</configuration>

5.安装hive和mysq完成后,将mysql的连接jar包拷贝到$HIVE_HOME/lib目录下
如果出现没有权限的问题,在mysql授权(在安装mysql的机器上执行)
mysql -uroot -p
#(执行下面的语句 *.*:所有库下的所有表 %:任何IP地址或主机都可以连接)
GRANT ALL PRIVILEGES ON *.* TO ‘root‘@‘%‘ IDENTIFIED BY ‘root‘ WITH GRANT OPTION;
FLUSH PRIVILEGES;

6. Jline包版本不一致的问题,需要拷贝hive的lib目录中jline.2.12.jar的jar包替换掉hadoop中的
/home/hadoop/app/hadoop-2.6.4/share/hadoop/yarn/lib/jline-0.9.94.jar


启动hive
bin/hive

使用方式

 

Hive交互shell

 

bin/hive

Hive thrift服务

技术分享

启动方式,(假如是在hadoop01上):

启动为前台:bin/hiveserver2

启动为后台:nohup bin/hiveserver2 1>/var/log/hiveserver.log 2>/var/log/hiveserver.err &

 

启动成功后,可以在别的节点上用beeline去连接

方式(1

hive/bin/beeline  回车,进入beeline的命令界面

输入命令连接hiveserver2

beeline> !connect jdbc:hive2//mini1:10000

hadoop01hiveserver2所启动的那台主机名,端口默认是10000

方式(2

或者启动就连接:

bin/beeline -u jdbc:hive2://mini1:10000 -n hadoop

 

 

Hive命令

[hadoop@hdp-node-02 ~]$ hive  -e  ‘sql’

 

Hive

标签:lib   包括   grant   过程   err   生成   服务   grep   man   

原文地址:http://www.cnblogs.com/duan2/p/7565106.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!