标签:style blog http os 使用 java ar strong 文件
Master、Slave1、Slave2这三台机器上均需要安装Spark。
首先在Master上安装Spark,具体步骤如下:
第一步:把Master上的Spark解压:
我们直接解压到当前目录下:
此时,我们创建Spark的目录“/usr/local/spark”:
把解压后的“spark-1.0.0-bin-hadoop1”复制到/usr/local/spark”下面:
第二步:配置环境变量
进入配置文件:
在配置文件中加入“SPARK_HOME”并把spark的bin目录加到PATH中:
配置后保存退出,然后使配置生效:
第三步:配置Spark
进入Spark的conf目录:
在配置文件中加入“SPARK_HOME”并把spark的bin目录加到PATH中:
把spark-env.sh.template 拷贝到spark-env.sh:
使用vim打开spark-env.sh:
在配置文件中添加如下配置信息:
其中:
JAVA_HOME:指定的是Java的安装目录;
SCALA_HOME:指定的是Scala的安装目录;
SPARK_MASTER_IP:指定的是Spark集群的Master节点的IP地址;
SPARK_WORKER_MEMOERY:指定的Worker节点能够最大分配给Excutors的内存大小,因为我们的三台机器配置都是2g,为了最充分的使用内存,这里设置为了2g;
HADOOP_CONF_DIR:指定的是我们原来的Hadoop集群的配置文件的目录;
保存退出。
接下来配置Spark的conf下的slaves文件,把Worker节点都添加进去:
打开后文件的内容:
我们需要把内容修改为:
可以看出我们把三台机器都设置为了Worker节点,也就是我们的主节点即是Master又是Worker节点。
保存退出。
上述就是Master上的Spark的安装。
第四步:Slave1和Slave2采用和Master完全一样的Spark安装配置,在此不再赘述。
【Spark亚太研究院系列丛书】Spark实战高手之路-第一章 构建Spark集群(第三步)(2)
标签:style blog http os 使用 java ar strong 文件
原文地址:http://www.cnblogs.com/spark-china/p/3962448.html